Optimal control (motion planning) of the free interface in classical two-phase Stefan problems is considered. The evolution of the free interface is modeled by a level set function. The first-order optimality system is derived on a formal basis. It provides gradient information based on the adjoint temperature and adjoint level set function. Suitable discretization schemes for the forward and adjoint systems are described. Numerical examples verify the correctness and flexibility of the proposed scheme.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:ch1-qucosa-62014 |
Date | 02 November 2010 |
Creators | Bernauer, Martin K., Herzog, Roland |
Contributors | TU Chemnitz, Fakultät für Mathematik |
Publisher | Universitätsbibliothek Chemnitz |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:preprint |
Format | application/pdf, text/plain, application/zip |
Relation | dcterms:isPartOf:Chemnitz Scientific Computing Preprints ; 10-04 |
Page generated in 0.0017 seconds