• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • Tagged with
  • 8
  • 8
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Conformal pseudo-metrics and some applications

Kraus, Daniela. Unknown Date (has links) (PDF)
University, Diss., 2004--Würzburg. / Erscheinungsjahr an der Haupttitelstelle: 2003.
2

Conformal pseudo-metrics and some applications / Konforme Pseudo-Metriken und einige Anwendungen

Kraus, Daniela January 2003 (has links) (PDF)
The point of departure for the present work has been the following free boundary value problem for analytic functions $f$ which are defined on a domain $G \subset \mathbb{C}$ and map into the unit disk $\mathbb{D}= \{z \in \mathbb{C} : |z|<1 \}$. Problem 1: Let $z_1, \ldots, z_n$ be finitely many points in a bounded simply connected domain $G \subset \mathbb{C}$. Show that there exists a holomorphic function $f:G \to \mathbb{D}$ with critical points $z_j$ (counted with multiplicities) and no others such that $\lim_{z \to \xi} \frac{|f'(z)|}{1-|f(z)|^2}=1$ for all $\xi \in \partial G$. If $G=\mathbb{D}$, Problem 1 was solved by K?nau [5] in the case of one critical point, and for more than one critical point by Fournier and Ruscheweyh [3]. The method employed by K?nau, Fournier and Ruscheweyh easily extends to more general domains $G$, say bounded by a Dini-smooth Jordan curve, but does not work for arbitrary bounded simply connected domains. In this paper we present a new approach to Problem 1, which shows that this boundary value problem is not an isolated question in complex analysis, but is intimately connected to a number of basic open problems in conformal geometry and non-linear PDE. One of our results is a solution to Problem 1 for arbitrary simply connected domains. However, we shall see that our approach has also some other ramifications, for instance to a well-known problem due to Rellich and Wittich in PDE. Roughly speaking, this paper is broken down into two parts. In a first step we construct a conformal metric in a bounded regular domain $G\subset \mathbb{C}$ with prescribed non-positive Gaussian curvature $k(z)$ and prescribed singularities by solving the first boundary value problem for the Gaussian curvature equation $\Delta u =-k(z) e^{2u}$ in $G$ with prescribed singularities and continuous boundary data. This is related to the Berger-Nirenberg problem in Riemannian geometry, the question which functions on a surface R can arise as the Gaussian curvature of a Riemannian metric on R. The special case, where $k(z)=-4$ and the domain $G$ is bounded by finitely many analytic Jordan curves was treated by Heins [4]. In a second step we show every conformal pseudo-metric on a simply connected domain $G\subseteq \mathbb{C}$ with constant negative Gaussian curvature and isolated zeros of integer order is the pullback of the hyperbolic metric on $\mathbb{D}$ under an analytic map $f:G \to \mathbb{D}$. This extends a theorem of Liouville which deals with the case that the pseudo-metric has no zeros at all. These two steps together allow a complete solution of Problem 1. Contents: Chapter I contains the statement of the main results and connects them with some old and new problems in complex analysis, conformal geometry and PDE: the Uniformization Theorem for Riemann surfaces, the problem of Schwarz-Picard, the Berger-Nirenberg problem, Wittich's problem, etc.. Chapter II and III have preparatory character. In Chapter II we recall some basic results about ordinary differential equations in the complex plane. In our presentation we follow Laine [6], but we have reorganized the material and present a self-contained account of the basic features of Riccati, Schwarzian and second order differential equations. In Chapter III we discuss the first boundary value problem for the Poisson equation. We shall need to consider this problem in the most general situation, which does not seem to be covered in a satisfactory way in the existing literature, see [1,2]. In Chapter IV we turn to a discussion of conformal pseudo-metrics in planar domains. We focus on conformal metrics with prescribed singularities and prescribed non-positive Gaussian curvature. We shall establish the existence of such metrics, that is, we solve the corresponding Gaussian curvature equation by making use of the results of Chapter III. In Chapter V we show that every constantly curved pseudo-metric can be represented as the pullback of either the hyperbolic, the euclidean or the spherical metric under an analytic map. This is proved by using the results of Chapter II. Finally we give in Chapter VI some applications of our results. [1,2] Courant, H., Hilbert, D., Methoden der Mathematischen Physik, Erster/ Zweiter Band, Springer-Verlag, Berlin, 1931/1937. [3] Fournier, R., Ruscheweyh, St., Free boundary value problems for analytic functions in the closed unit disk, Proc. Amer. Math. Soc. (1999), 127 no. 11, 3287-3294. [4] Heins, M., On a class of conformal metrics, Nagoya Math. J. (1962), 21, 1-60. [5] K?nau, R., L?gentreue Randverzerrung bei analytischer Abbildung in hyperbolischer und sph?ischer Geometrie, Mitt. Math. Sem. Giessen (1997), 229, 45-53. [6] Laine, I., Nevanlinna Theory and Complex Differential Equations, de Gruyter, Berlin - New York, 1993. / Der Ausgangspunkt dieser Arbeit war das folgende freie Randwertproblem f? analytische Funktionen $f$, die auf einem Gebiet $G \subset \mathbb{C}$ definiert sind und in den Einheitskreis $\mathbb{D}= \{z \in \mathbb{C} : |z|<1 \}$ abbilden. Problem 1: Es seien $z_1, \ldots, z_n$ endlich viele Punkte in einem beschr?kten einfach zusammenh?genden Gebiet $G \subset \mathbb{C}$. Existiert eine holomorphe Funktion $f:G \to \mathbb{D}$, die genau und nur in $z_j$ kritische Punkte (mit Vielfachheiten gez?lt) besitzt und $\lim_{z \to \xi} \frac{|f'(z)|}{1-|f(z)|^2}=1$ f? alle $\xi \in \partial G$ erf?lt. F? $G=\mathbb{D}$ wurde Problem 1 von K?nau [5] im Fall eines kritischen Punktes gel?t und f? mehr als einen kritischen Punkt von Fournier and Ruscheweyh [3]. Die Methode, die von K?nau, Fournier and Ruscheweyh benutzt wurde, l?st sich auf allgemeinere Gebiete $G$ ?ertragen, aber nicht auf beliebige beschr?kte einfach zusammenh?gende Gebiete. In dieser Arbeit wird ein Zugang zu Problem 1 dargestellt, der das Randwertproblem der Komplexen Analysis mit einer Reihe offener Probleme in der Konformen Geometrie und der Theorie nicht-linearer PDE in Zusammenhang bringt. Insbesondere wird Problem 1 f? beliebige einfach zusammenh?gende Gebiete gel?t. Es wird gezeigt, dass der gew?lte Zugang weitere Verzweigungen aufweist, z.B. zu einem wohlbekannten Problem von Rellich und Wittich in PDE. Die Arbeit besteht aus zwei Hauptteilen. In einem ersten Schritt werden konforme Metriken in einem beschr?kten regul?en Gebiet $G \subset \mathbb{C}$ mit vorgeschriebener nicht-positiver Gau?cher Kr?mung $k(z)$ und vorgeschriebenen Singularit?en konstruiert, indem das erste Randwertproblem f? die Gau?che Kr?mungsgleichung $\Delta u=-k(z) e^{2u}$ in $G$ mit vorgeschriebenen Singularit?en und stetigen Randwerten gel?t wird. Dies steht in Zusammenhang mit dem Berger-Nirenberg Problem, der Frage, welche Funktionen auf einer Riemannschen Fl?he R als Gau?che Kr?mung einer Riemannschen Metrik auf R auftreten k?nen. Der Spezialfall, dass $k(z)=-4$ und das Gebiet $G$ durch endlich viele analytische Jordankurven berandet ist, wurde von Heins [4] gel?t. In einem zweiten Schritt wird gezeigt, dass jede konforme Pseudo-Metrik auf einem einfach zusammenh?genden Gebiet $G \subseteq \mathbb{C}$ mit konstanter negativer Gau?cher Kr?mung und isolierten Nullstellen ganzzahliger Ordnung die Zur?kholung der hyperbolischen Metrik auf $\mathbb{D}$ unter einer holomorphen Funktion $f:G \to \mathbb{D}$ ist. Dies erweitert einen Satz von Liouville, der den Fall einer nullstellenfreien Pseudo-Metrik behandelt. Die beschriebenen zwei Schritte l?en Problem 1 vollst?dig. Inhaltsangabe: Kapitel I enth?t die Ergebnisse der Arbeit und stellt den Zusammenhang mit alten und neuen Problemen in Komplexer Analysis, Konformer Geometrie, und PDE dar: dem Uniformisierungssatz f? Riemannsche Fl?hen, dem Problem von Schwarz-Picard, dem Berger-Nirenberg Problem, Wittichs Problem, etc.. In Kapitel II wird an grundlegende Ergebnisse gew?nlicher Differentialgleichungen in der komplexen Ebene erinnert. Die Darstellung folgt Laine [6]. Das Material ist reorganisiert und enth?t eine Auflistung der wichtigsten Gesichtspunkte von Riccati und Schwarzschen Differentialgleichungen sowie Differentialgleichungen zweiter Ordnung. In Kapitel III wird das erste Randwertproblem f? die Poisson Gleichung diskutiert. Es wird in gr&#31204;ter Allgemeinheit betrachtet, da es scheinbar in der vorhandenen Literatur nicht in einer befriedigenden Weise behandelt wird, siehe [1,2]. In Kapitel IV werden Pseudo-Metriken in ebenen Gebieten diskutiert. Im Mittelpunkt stehen Metriken mit vorgeschriebenen Singularit?en und vorgeschriebener nicht-positiver Gau?cher Kr?mung. Die Existenz solcher Metriken wird mithilfe der Ergebnisse aus Kapitel III bewiesen. In Kapitel V wird gezeigt, dass sich jede Pseudo-Metrik konstanter Kr?mung als Zur?kholung der hyperbolischen, der euklidischen oder der sph?ischen Metrik unter einer analytischen Funktion darstellen l?st. Hierf? werden die Ergebnisse aus Kapitel II herangezogen. Einige Anwendungen der Ergebnisse befinden sich in Kaptil VI. [1,2] Courant, H., Hilbert, D., Methoden der Mathematischen Physik, Erster/ Zweiter Band, Springer-Verlag, Berlin, 1931/1937. [3] Fournier, R., Ruscheweyh, St., Free boundary value problems for analytic functions in the closed unit disk, Proc. Amer. Math. Soc. (1999), 127 no. 11, 3287-3294. [4] Heins, M., On a class of conformal metrics, Nagoya Math. J. (1962), 21, 1-60. [5] K?nau, R., L?gentreue Randverzerrung bei analytischer Abbildung in hyperbolischer und sph?ischer Geometrie, Mitt. Math. Sem. Giessen (1997), 229, 45-53. [6] Laine, I., Nevanlinna Theory and Complex Differential Equations, de Gruyter, Berlin - New York, 1993.
3

Freie Randwertprobleme für n-harmonische Abbildungen Kompaktheit und Regularität /

Mueller, Thomas. Unknown Date (has links) (PDF)
Universiẗat, Diss., 1999--Freiburg (Breisgau).
4

Optimal Control of the Classical Two-Phase Stefan Problem in Level Set Formulation

Bernauer, Martin K., Herzog, Roland 02 November 2010 (has links) (PDF)
Optimal control (motion planning) of the free interface in classical two-phase Stefan problems is considered. The evolution of the free interface is modeled by a level set function. The first-order optimality system is derived on a formal basis. It provides gradient information based on the adjoint temperature and adjoint level set function. Suitable discretization schemes for the forward and adjoint systems are described. Numerical examples verify the correctness and flexibility of the proposed scheme.
5

Optimal Control of the Classical Two-Phase Stefan Problem in Level Set Formulation

Bernauer, Martin K., Herzog, Roland January 2010 (has links)
Optimal control (motion planning) of the free interface in classical two-phase Stefan problems is considered. The evolution of the free interface is modeled by a level set function. The first-order optimality system is derived on a formal basis. It provides gradient information based on the adjoint temperature and adjoint level set function. Suitable discretization schemes for the forward and adjoint systems are described. Numerical examples verify the correctness and flexibility of the proposed scheme.:1 Introduction 2 Model Equations 3 The Optimal Control Problem and Optimality Conditions 4 Discretization of the Forward and Adjoint Systems 5 Numerical Results 6 Discussion and Conclusion A Formal Derivation of the Optimality Conditions B Transport Theorems and Shape Calculus
6

Macroscopic diffusion models for precipitation in crystalline gallium arsenide

Kimmerle, Sven-Joachim 23 December 2009 (has links)
Ausgehend von einem thermodynamisch konsistenten Modell von Dreyer und Duderstadt für Tropfenbildung in Galliumarsenid-Kristallen, das Oberflächenspannung und Spannungen im Kristall berücksichtigt, stellen wir zwei mathematische Modelle zur Evolution der Größe flüssiger Tropfen in Kristallen auf. Das erste Modell behandelt das Regime diffusionskontrollierter Interface-Bewegung, während das zweite Modell das Regime Interface-kontrollierter Bewegung des Interface behandelt. Unsere Modellierung berücksichtigt die Erhaltung von Masse und Substanz. Diese Modelle verallgemeinern das wohlbekannte Mullins-Sekerka-Modell für die Ostwald-Reifung. Wir konzentrieren uns auf arsenreiche kugelförmige Tropfen in einem Galliumarsenid-Kristall. Tropfen können mit der Zeit schrumpfen bzw. wachsen, die Tropfenmittelpunkte sind jedoch fixiert. Die Flüssigkeit wird als homogen im Raum angenommen. Aufgrund verschiedener Skalen für typische Distanzen zwischen Tropfen und typischen Radien der flüssigen Tropfen können wir formal so genannte Mean-Field-Modelle herleiten. Für ein Modell im diffusionskontrollierten Regime beweisen wir den Grenzübergang mit Homogenisierungstechniken unter plausiblen Annahmen. Diese Mean-Field-Modelle verallgemeinern das Lifshitz-Slyozov-Wagner-Modell, welches rigoros aus dem Mullins-Sekerka-Modell hergeleitet werden kann, siehe Niethammer et al., und gut verstanden ist. Mean-Field-Modelle beschreiben die wichtigsten Eigenschaften unseres Systems und sind gut für Numerik und für weitere Analysis geeignet. Wir bestimmen mögliche Gleichgewichte und diskutieren deren Stabilität. Numerische Resultate legen nahe, wann welches der beiden Regimes gut zur experimentellen Situation passen könnte. / Based on a thermodynamically consistent model for precipitation in gallium arsenide crystals including surface tension and bulk stresses by Dreyer and Duderstadt, we propose two different mathematical models to describe the size evolution of liquid droplets in a crystalline solid. The first model treats the diffusion-controlled regime of interface motion, while the second model is concerned with the interface-controlled regime of interface motion. Our models take care of conservation of mass and substance. These models generalise the well-known Mullins-Sekerka model for Ostwald ripening. We concentrate on arsenic-rich liquid spherical droplets in a gallium arsenide crystal. Droplets can shrink or grow with time but the centres of droplets remain fixed. The liquid is assumed to be homogeneous in space. Due to different scales for typical distances between droplets and typical radii of liquid droplets we can derive formally so-called mean field models. For a model in the diffusion-controlled regime we prove this limit by homogenisation techniques under plausible assumptions. These mean field models generalise the Lifshitz-Slyozov-Wagner model, which can be derived from the Mullins-Sekerka model rigorously, see Niethammer et al., and is well-understood. Mean field models capture the main properties of our system and are well adapted for numerics and further analysis. We determine possible equilibria and discuss their stability. Numerical evidence suggests in which case which one of the two regimes might be appropriate to the experimental situation.
7

Level set methods for higher order evolution laws / Levelset-Verfahren für Evolutionsgleichungen höherer Ordnung

Stöcker, Christina 12 March 2008 (has links) (PDF)
A numerical treatment of non-linear higher-order geometric evolution equations with the level set and the finite element method is presented. The isotropic, weak anisotropic and strong anisotropic situation is discussed. Most of the equations considered in this work arise from the field of thin film growth. A short introduction to the subject is given. Four different models are discussed: mean curvature flow, surface diffusion, a kinetic model, which combines the effects of mean curvature flow and surface diffusion and includes a further kinetic component, and an adatom model, which incorporates in addition free adatoms. As an introduction to the numerical schemes, first the isotropic and weak anisotropic situation is considered. Then strong anisotropies (non-convex anisotropies) are used to simulate the phenomena of faceting and coarsening. The experimentally observed effect of corner and edge roundings is reached in the simulation through the regularization of the strong anisotropy with a higher-order curvature term. The curvature regularization leads to an increase by two in the order of the equations, which results in highly non-linear equations of up to 6th order. For the numerical solution, the equations are transformed into systems of second order equations, which are solved with a Schur complement approach. The adatom model constitutes a diffusion equation on a moving surface. An operator splitting approach is used for the numerical solution. In difference to other works, which restrict to the isotropic situation, also the anisotropic situation is discussed and solved numerically. Furthermore, a treatment of geometric evolution equations on implicitly given curved surfaces with the level set method is given. In particular, the numerical solution of surface diffusion on curved surfaces is presented. The equations are discretized in space by standard linear finite elements. For the time discretization a semi-implicit discretization scheme is employed. The derivation of the numerical schemes is presented in detail, and numerous computational results are given for the 2D and 3D situation. To keep computational costs low, the finite element grid is adaptively refined near the moving curves and surfaces resp. A redistancing algorithm based on a local Hopf-Lax formula is used. The algorithm has been extended by the authors to the 3D case. A detailed description of the algorithm in 3D is presented in this work. / In der Arbeit geht es um die numerische Behandlung nicht-linearer geometrischer Evolutionsgleichungen höherer Ordnung mit Levelset- und Finite-Elemente-Verfahren. Der isotrope, schwach anisotrope und stark anisotrope Fall wird diskutiert. Die meisten in dieser Arbeit betrachteten Gleichungen entstammen dem Gebiet des Dünnschicht-Wachstums. Eine kurze Einführung in dieses Gebiet wird gegeben. Es werden vier verschiedene Modelle diskutiert: mittlerer Krümmungsfluss, Oberflächendiffusion, ein kinetisches Modell, welches die Effekte des mittleren Krümmungsflusses und der Oberflächendiffusion kombiniert und zusätzlich eine kinetische Komponente beinhaltet, und ein Adatom-Modell, welches außerdem freie Adatome berücksichtigt. Als Einführung in die numerischen Schemata, wird zuerst der isotrope und schwach anisotrope Fall betrachtet. Anschließend werden starke Anisotropien (nicht-konvexe Anisotropien) benutzt, um Facettierungs- und Vergröberungsphänomene zu simulieren. Der in Experimenten beobachtete Effekt der Ecken- und Kanten-Abrundung wird in der Simulation durch die Regularisierung der starken Anisotropie durch einen Krümmungsterm höherer Ordnung erreicht. Die Krümmungsregularisierung führt zu einer Erhöhung der Ordnung der Gleichung um zwei, was hochgradig nicht-lineare Gleichungen von bis zu sechster Ordnung ergibt. Für die numerische Lösung werden die Gleichungen auf Systeme zweiter Ordnungsgleichungen transformiert, welche mit einem Schurkomplement-Ansatz gelöst werden. Das Adatom-Modell bildet eine Diffusionsgleichung auf einer bewegten Fläche. Zur numerischen Lösung wird ein Operatorsplitting-Ansatz verwendet. Im Unterschied zu anderen Arbeiten, die sich auf den isotropen Fall beschränken, wird auch der anisotrope Fall diskutiert und numerisch gelöst. Außerdem werden geometrische Evolutionsgleichungen auf implizit gegebenen gekrümmten Flächen mit Levelset-Verfahren behandelt. Insbesondere wird die numerische Lösung von Oberflächendiffusion auf gekrümmten Flächen dargestellt. Die Gleichungen werden im Ort mit linearen Standard-Finiten-Elementen diskretisiert. Als Zeitdiskretisierung wird ein semi-implizites Diskretisierungsschema verwendet. Die Herleitung der numerischen Schemata wird detailliert dargestellt, und zahlreiche numerische Ergebnisse für den 2D und 3D Fall sind gegeben. Um den Rechenaufwand gering zu halten, wird das Finite-Elemente-Gitter adaptiv an den bewegten Kurven bzw. den bewegten Flächen verfeinert. Es wird ein Redistancing-Algorithmus basierend auf einer lokalen Hopf-Lax Formel benutzt. Der Algorithmus wurde von den Autoren auf den 3D Fall erweitert. In dieser Arbeit wird der Algorithmus für den 3D Fall detailliert beschrieben.
8

Level set methods for higher order evolution laws

Stöcker, Christina 20 February 2008 (has links)
A numerical treatment of non-linear higher-order geometric evolution equations with the level set and the finite element method is presented. The isotropic, weak anisotropic and strong anisotropic situation is discussed. Most of the equations considered in this work arise from the field of thin film growth. A short introduction to the subject is given. Four different models are discussed: mean curvature flow, surface diffusion, a kinetic model, which combines the effects of mean curvature flow and surface diffusion and includes a further kinetic component, and an adatom model, which incorporates in addition free adatoms. As an introduction to the numerical schemes, first the isotropic and weak anisotropic situation is considered. Then strong anisotropies (non-convex anisotropies) are used to simulate the phenomena of faceting and coarsening. The experimentally observed effect of corner and edge roundings is reached in the simulation through the regularization of the strong anisotropy with a higher-order curvature term. The curvature regularization leads to an increase by two in the order of the equations, which results in highly non-linear equations of up to 6th order. For the numerical solution, the equations are transformed into systems of second order equations, which are solved with a Schur complement approach. The adatom model constitutes a diffusion equation on a moving surface. An operator splitting approach is used for the numerical solution. In difference to other works, which restrict to the isotropic situation, also the anisotropic situation is discussed and solved numerically. Furthermore, a treatment of geometric evolution equations on implicitly given curved surfaces with the level set method is given. In particular, the numerical solution of surface diffusion on curved surfaces is presented. The equations are discretized in space by standard linear finite elements. For the time discretization a semi-implicit discretization scheme is employed. The derivation of the numerical schemes is presented in detail, and numerous computational results are given for the 2D and 3D situation. To keep computational costs low, the finite element grid is adaptively refined near the moving curves and surfaces resp. A redistancing algorithm based on a local Hopf-Lax formula is used. The algorithm has been extended by the authors to the 3D case. A detailed description of the algorithm in 3D is presented in this work. / In der Arbeit geht es um die numerische Behandlung nicht-linearer geometrischer Evolutionsgleichungen höherer Ordnung mit Levelset- und Finite-Elemente-Verfahren. Der isotrope, schwach anisotrope und stark anisotrope Fall wird diskutiert. Die meisten in dieser Arbeit betrachteten Gleichungen entstammen dem Gebiet des Dünnschicht-Wachstums. Eine kurze Einführung in dieses Gebiet wird gegeben. Es werden vier verschiedene Modelle diskutiert: mittlerer Krümmungsfluss, Oberflächendiffusion, ein kinetisches Modell, welches die Effekte des mittleren Krümmungsflusses und der Oberflächendiffusion kombiniert und zusätzlich eine kinetische Komponente beinhaltet, und ein Adatom-Modell, welches außerdem freie Adatome berücksichtigt. Als Einführung in die numerischen Schemata, wird zuerst der isotrope und schwach anisotrope Fall betrachtet. Anschließend werden starke Anisotropien (nicht-konvexe Anisotropien) benutzt, um Facettierungs- und Vergröberungsphänomene zu simulieren. Der in Experimenten beobachtete Effekt der Ecken- und Kanten-Abrundung wird in der Simulation durch die Regularisierung der starken Anisotropie durch einen Krümmungsterm höherer Ordnung erreicht. Die Krümmungsregularisierung führt zu einer Erhöhung der Ordnung der Gleichung um zwei, was hochgradig nicht-lineare Gleichungen von bis zu sechster Ordnung ergibt. Für die numerische Lösung werden die Gleichungen auf Systeme zweiter Ordnungsgleichungen transformiert, welche mit einem Schurkomplement-Ansatz gelöst werden. Das Adatom-Modell bildet eine Diffusionsgleichung auf einer bewegten Fläche. Zur numerischen Lösung wird ein Operatorsplitting-Ansatz verwendet. Im Unterschied zu anderen Arbeiten, die sich auf den isotropen Fall beschränken, wird auch der anisotrope Fall diskutiert und numerisch gelöst. Außerdem werden geometrische Evolutionsgleichungen auf implizit gegebenen gekrümmten Flächen mit Levelset-Verfahren behandelt. Insbesondere wird die numerische Lösung von Oberflächendiffusion auf gekrümmten Flächen dargestellt. Die Gleichungen werden im Ort mit linearen Standard-Finiten-Elementen diskretisiert. Als Zeitdiskretisierung wird ein semi-implizites Diskretisierungsschema verwendet. Die Herleitung der numerischen Schemata wird detailliert dargestellt, und zahlreiche numerische Ergebnisse für den 2D und 3D Fall sind gegeben. Um den Rechenaufwand gering zu halten, wird das Finite-Elemente-Gitter adaptiv an den bewegten Kurven bzw. den bewegten Flächen verfeinert. Es wird ein Redistancing-Algorithmus basierend auf einer lokalen Hopf-Lax Formel benutzt. Der Algorithmus wurde von den Autoren auf den 3D Fall erweitert. In dieser Arbeit wird der Algorithmus für den 3D Fall detailliert beschrieben.

Page generated in 0.0768 seconds