• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • Tagged with
  • 7
  • 7
  • 7
  • 7
  • 7
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Transparent top electrodes for organic solar cells

Schubert, Sylvio 07 April 2015 (has links) (PDF)
Organic solar cells offer attractive properties for novel applications and continuous advances in material and concept development have led to significant improvements in device performance. To exploit their full potential (roll-to-roll production of flexible and top-illuminated devices, using e.g. opaque metal foil or textile as substrate), highly transparent, conductive, mechanically flexible, and cost-efficient top electrodes are of great importance. The current standard material indium tin oxide (ITO) is rigid, expensive and requires a high energy / high temperature deposition process, limiting ITO (and other transparent conductive oxides) to bottom electrode applications. This work presents fundamental investigations to understand and control the properties of transparent conductors and documents four different approaches to prepare transparent electrodes on top of efficient small molecule organic solar cells, with the aim to replace ITO. Fullerene C60 layers are investigated as completely carbon-based electrodes. For an optimized doping concentration, sheet resistance and transmittance are improved and efficient solar cells are realized. Since the lateral charge transport is still limited, a combination with a microstructured conductor is suggested. Pulsed laser deposition allows for the first time a damage-free preparation of gallium doped zinc oxide (ZnO:Ga) layers on top of organic devices by careful optimization of the deposition atmosphere. ZnO:Ga electrodes with a transmittance of Tvis = 82.7 % and sheet resistance Rs = 83 Ohm/sq are obtained. The formation of local shunts due to ZnO:Ga droplets is identified and then prevented by a shadow mask between the target and the sample, enabling solar cells with similar efficiency (2.9 %) compared to a reference device using a state-of-the-art metal top contact. Another very promising alternative are intrinsically flexible, ultra-thin silver layers. By introducing an oxide interlayer, the adverse interpenetration of silver and organic materials is prevented and the charge extraction from the solar cells is improved. With a second oxide layer on top, the silver electrode is significantly stabilized, leading to an increased solar cell lifetime of 4500 h (factor of 107). Scanning electron micrographs of Ag thin films reveal a poor wetting on organic and oxide substrates, which strongly limits the electrode performance. However, it is significantly improved by a 1 nm thin seed layer. An optimized Au/Ag film reaches Tvis = 78.1 % and Rs = 19 Ohm/sq, superior to ITO. Finally, silver electrodes blended with calcium show a unique microstructure which enables unusually high transmittance (84.3 % at 27.3 Ohm/sq) even above the expectations from bulk material properties and thin film optics. Such values have not been reached for transparent electrodes on top of organic material so far. Solar cells with a Ca:Ag top electrode achieve an efficiency of 7.2 %, which exceeds the 6.9 % of bottom-illuminated reference cells with conventional ITO electrodes and defines a new world record for top-illuminated organic solar cells. With these electrodes, semi-transparent and large-area devices, as well as devices on opaque and flexible substrates are successfully prepared. In summary, it is shown that ZnO:Ga and thin metal electrodes can replace ITO and fill the lack of high performance top electrodes. Moreover, the introduced concepts are not restricted to specific solar cell architectures or organic compounds but are widely applicable for a variety of organic devices.
2

Transparent top electrodes for organic solar cells

Schubert, Sylvio 26 February 2015 (has links)
Organic solar cells offer attractive properties for novel applications and continuous advances in material and concept development have led to significant improvements in device performance. To exploit their full potential (roll-to-roll production of flexible and top-illuminated devices, using e.g. opaque metal foil or textile as substrate), highly transparent, conductive, mechanically flexible, and cost-efficient top electrodes are of great importance. The current standard material indium tin oxide (ITO) is rigid, expensive and requires a high energy / high temperature deposition process, limiting ITO (and other transparent conductive oxides) to bottom electrode applications. This work presents fundamental investigations to understand and control the properties of transparent conductors and documents four different approaches to prepare transparent electrodes on top of efficient small molecule organic solar cells, with the aim to replace ITO. Fullerene C60 layers are investigated as completely carbon-based electrodes. For an optimized doping concentration, sheet resistance and transmittance are improved and efficient solar cells are realized. Since the lateral charge transport is still limited, a combination with a microstructured conductor is suggested. Pulsed laser deposition allows for the first time a damage-free preparation of gallium doped zinc oxide (ZnO:Ga) layers on top of organic devices by careful optimization of the deposition atmosphere. ZnO:Ga electrodes with a transmittance of Tvis = 82.7 % and sheet resistance Rs = 83 Ohm/sq are obtained. The formation of local shunts due to ZnO:Ga droplets is identified and then prevented by a shadow mask between the target and the sample, enabling solar cells with similar efficiency (2.9 %) compared to a reference device using a state-of-the-art metal top contact. Another very promising alternative are intrinsically flexible, ultra-thin silver layers. By introducing an oxide interlayer, the adverse interpenetration of silver and organic materials is prevented and the charge extraction from the solar cells is improved. With a second oxide layer on top, the silver electrode is significantly stabilized, leading to an increased solar cell lifetime of 4500 h (factor of 107). Scanning electron micrographs of Ag thin films reveal a poor wetting on organic and oxide substrates, which strongly limits the electrode performance. However, it is significantly improved by a 1 nm thin seed layer. An optimized Au/Ag film reaches Tvis = 78.1 % and Rs = 19 Ohm/sq, superior to ITO. Finally, silver electrodes blended with calcium show a unique microstructure which enables unusually high transmittance (84.3 % at 27.3 Ohm/sq) even above the expectations from bulk material properties and thin film optics. Such values have not been reached for transparent electrodes on top of organic material so far. Solar cells with a Ca:Ag top electrode achieve an efficiency of 7.2 %, which exceeds the 6.9 % of bottom-illuminated reference cells with conventional ITO electrodes and defines a new world record for top-illuminated organic solar cells. With these electrodes, semi-transparent and large-area devices, as well as devices on opaque and flexible substrates are successfully prepared. In summary, it is shown that ZnO:Ga and thin metal electrodes can replace ITO and fill the lack of high performance top electrodes. Moreover, the introduced concepts are not restricted to specific solar cell architectures or organic compounds but are widely applicable for a variety of organic devices.
3

Controlled molecular beam deposition of hybrid inorganic/organic semiconductor structures

Sparenberg, Mino 21 June 2018 (has links)
Zentrales Thema dieser Dissertation ist die Untersuchung anorganisch/organischer Hybridsysteme (HIOS) mit besonderem Fokus auf den speziellen Prozessen an der Grenzfläche beider Materialklassen. Organische Moleküle, in Verbindung mit anorganischen Halbleitern haben ein großes Potenzial für Anwendungen in zukünftigen optoelektronischen Hybridbauteilen, indem sie Vorteile zweier unterschiedlicher Welten kombinieren. Entscheidend für die Herstellung von hybriden Strukturen ist das Verständnis der Wechselwirkungen an der Grenzfläche zwischen organischem und anorganischem Material. In dieser Arbeit werden diese Wechselwirkungen analysiert, um eine Wachstumskontrolle an der Grenzfläche zwischen konjugierten organischen Molekül und anorganischem Halbleiter zu ermöglichen. Hierfür werden unterschiedliche Ansätze verfolgt: Im ersten Teil der Arbeit wird die Wechselwirkung des Modellsystems Sexiphenyl (6P) an der Grenzfläche zu ZnO untersucht, sowie das Wachstum des Moleküls mittels verschiedener Methoden kontrolliert. Das daraus gewonnene Wissen kann im zweiten Teil dazu verwendet werden einen hybriden ZnO/6P/ZnO-Stapel zu realisieren, bei dem die organische Schicht ohne Beeinträchtigung der Kristallstruktur, mit definierten Grenzflächen bis hin zur atomaren/molekularen Ebene, überwachsen werden kann. Der letzte Teil der Arbeit befasst sich mit der optischen Echtzeit-Beobachtung während des organischen Wachstums verschiedener Moleküle. Dadurch ist es möglich Veränderungen von Struktureigenschaften und Wechselwirkungen zwischen Molekülen und dem Substrat zerstörungsfrei zu bestimmen, während diese aufgewachsen werden. Hierdurch können schlussendlich mögliche Mechanismen aufgezeigt werden, um elektronische und optische Wechselwirkung an der Grenzfläche zwischen organischem Molekül und anorganischen Halbleitern zu analysieren, sowie Wachstumsprozesse weiter zu verstehen und kontrollieren. / The central subject of this thesis are hybrid inorganic/organic systems (HIOS) with a focus on the specific processes at the interface between the two material classes. Organic molecules used together with inorganic semiconductors, have a great potential for future optoelectronic applications in hybrid components, by combining the advantages of two dissimilar worlds. Decisive for the production of hybrid structures is the understanding of the interactions at the interface between organic and inorganic material. In this thesis, the interactions are analyzed to enable growth control at the interface between conjugated organic molecules and inorganic semiconductors. In the first part of the thesis, the interaction of the model system sexiphenyl (6P) at the interface with ZnO, as well as approaches to control the growth of the molecule are being investigated. The knowledge gained here is used in the second part to realize a hybrid ZnO/6P/ ZnO stack, in which the organic layer can be overgrown without affecting the crystal structure, exhibiting defined interfaces down to the atomic/molecular level. The last part of the thesis deals with real time optical observation during organic growth of different molecules. By this changes in structural properties and interactions between molecules and the substrate can be non-destructively determined as they are growing. Ultimately, a comprehensive insight into the optical and electronic interactions at the interface between organic molecules and inorganic semiconductors can be gained and possible control mechanisms are shown.
4

Level set methods for higher order evolution laws / Levelset-Verfahren für Evolutionsgleichungen höherer Ordnung

Stöcker, Christina 12 March 2008 (has links) (PDF)
A numerical treatment of non-linear higher-order geometric evolution equations with the level set and the finite element method is presented. The isotropic, weak anisotropic and strong anisotropic situation is discussed. Most of the equations considered in this work arise from the field of thin film growth. A short introduction to the subject is given. Four different models are discussed: mean curvature flow, surface diffusion, a kinetic model, which combines the effects of mean curvature flow and surface diffusion and includes a further kinetic component, and an adatom model, which incorporates in addition free adatoms. As an introduction to the numerical schemes, first the isotropic and weak anisotropic situation is considered. Then strong anisotropies (non-convex anisotropies) are used to simulate the phenomena of faceting and coarsening. The experimentally observed effect of corner and edge roundings is reached in the simulation through the regularization of the strong anisotropy with a higher-order curvature term. The curvature regularization leads to an increase by two in the order of the equations, which results in highly non-linear equations of up to 6th order. For the numerical solution, the equations are transformed into systems of second order equations, which are solved with a Schur complement approach. The adatom model constitutes a diffusion equation on a moving surface. An operator splitting approach is used for the numerical solution. In difference to other works, which restrict to the isotropic situation, also the anisotropic situation is discussed and solved numerically. Furthermore, a treatment of geometric evolution equations on implicitly given curved surfaces with the level set method is given. In particular, the numerical solution of surface diffusion on curved surfaces is presented. The equations are discretized in space by standard linear finite elements. For the time discretization a semi-implicit discretization scheme is employed. The derivation of the numerical schemes is presented in detail, and numerous computational results are given for the 2D and 3D situation. To keep computational costs low, the finite element grid is adaptively refined near the moving curves and surfaces resp. A redistancing algorithm based on a local Hopf-Lax formula is used. The algorithm has been extended by the authors to the 3D case. A detailed description of the algorithm in 3D is presented in this work. / In der Arbeit geht es um die numerische Behandlung nicht-linearer geometrischer Evolutionsgleichungen höherer Ordnung mit Levelset- und Finite-Elemente-Verfahren. Der isotrope, schwach anisotrope und stark anisotrope Fall wird diskutiert. Die meisten in dieser Arbeit betrachteten Gleichungen entstammen dem Gebiet des Dünnschicht-Wachstums. Eine kurze Einführung in dieses Gebiet wird gegeben. Es werden vier verschiedene Modelle diskutiert: mittlerer Krümmungsfluss, Oberflächendiffusion, ein kinetisches Modell, welches die Effekte des mittleren Krümmungsflusses und der Oberflächendiffusion kombiniert und zusätzlich eine kinetische Komponente beinhaltet, und ein Adatom-Modell, welches außerdem freie Adatome berücksichtigt. Als Einführung in die numerischen Schemata, wird zuerst der isotrope und schwach anisotrope Fall betrachtet. Anschließend werden starke Anisotropien (nicht-konvexe Anisotropien) benutzt, um Facettierungs- und Vergröberungsphänomene zu simulieren. Der in Experimenten beobachtete Effekt der Ecken- und Kanten-Abrundung wird in der Simulation durch die Regularisierung der starken Anisotropie durch einen Krümmungsterm höherer Ordnung erreicht. Die Krümmungsregularisierung führt zu einer Erhöhung der Ordnung der Gleichung um zwei, was hochgradig nicht-lineare Gleichungen von bis zu sechster Ordnung ergibt. Für die numerische Lösung werden die Gleichungen auf Systeme zweiter Ordnungsgleichungen transformiert, welche mit einem Schurkomplement-Ansatz gelöst werden. Das Adatom-Modell bildet eine Diffusionsgleichung auf einer bewegten Fläche. Zur numerischen Lösung wird ein Operatorsplitting-Ansatz verwendet. Im Unterschied zu anderen Arbeiten, die sich auf den isotropen Fall beschränken, wird auch der anisotrope Fall diskutiert und numerisch gelöst. Außerdem werden geometrische Evolutionsgleichungen auf implizit gegebenen gekrümmten Flächen mit Levelset-Verfahren behandelt. Insbesondere wird die numerische Lösung von Oberflächendiffusion auf gekrümmten Flächen dargestellt. Die Gleichungen werden im Ort mit linearen Standard-Finiten-Elementen diskretisiert. Als Zeitdiskretisierung wird ein semi-implizites Diskretisierungsschema verwendet. Die Herleitung der numerischen Schemata wird detailliert dargestellt, und zahlreiche numerische Ergebnisse für den 2D und 3D Fall sind gegeben. Um den Rechenaufwand gering zu halten, wird das Finite-Elemente-Gitter adaptiv an den bewegten Kurven bzw. den bewegten Flächen verfeinert. Es wird ein Redistancing-Algorithmus basierend auf einer lokalen Hopf-Lax Formel benutzt. Der Algorithmus wurde von den Autoren auf den 3D Fall erweitert. In dieser Arbeit wird der Algorithmus für den 3D Fall detailliert beschrieben.
5

Organic Small Molecules: Correlation between Molecular Structure, Thin Film Growth, and Solar Cell Performance / Kleine organische Moleküle: Zusammenhang zwischen Molekülstruktur, Dünnschichtwachstum und Solarzelleneffizienz

Schünemann, Christoph 18 February 2013 (has links) (PDF)
Das wesentliche Ziel dieser Doktorarbeit ist es, die Zusammenhänge zwischen der Struktur von kleinen organischen Molekülen, deren Anordnung in der Dünnschicht und der Effizienz organischer Solarzellen zu beleuchten. Die Kombination der komplementären Methoden spektroskopischer Ellipsometrie (VASE) und Röntgenstreuung, vor allem der unter streifendem Einfall (GIXRD), hat sich als sehr effiient für die Strukturuntersuchungen organischer Dünnschichten erwiesen. Zusammen geben sie einen detailreichen Einblick in die intermolekulare Anordnung, die Kristallinität, die molekulare Orientierung, die optischen Konstanten n und k und die Phasenseparation von organischen Schichten. Zusätzlich wird die Topografie der organischen Dünnschicht mit Rasterkraftmikroskopie untersucht. Der erste Fokus liegt auf der Analyse des Dünnschichtwachstums von Zink-Phthalocyanin (ZnPc) Einzelschichten. Für alle untersuchten Schichtdicken (5, 10, 25, 50 nm) und Substrattemperaturen (Tsub=30°C, 60°C, 90°C) zeigt ZnPc ein kristallines Schichtwachstum mit aufrecht stehenden ZnPc Molekülen. Um effiziente organische Solarzellen herzustellen, werden Donor- und Akzeptormoleküle üblicherweise koverdampft. Bei der Mischung von Donor- und Akzeptormolekülen bildet sich eine gewisse Phasenseparation aus, deren Form wesentlich für die Ladungsträgerextraktion entlang der Perkolationpfade ist. Der Ursprung dieser Phasenseparation wird innerhalb dieser Arbeit experimentell für ZnPc:C60 Absorber-Mischschichten untersucht. Um die Ausprägung der Phasenseparation zu variieren, werden verschiedene Tsub (30°C, 100°C, 140°C) und Mischverhältnisse (6:1, 3:1, 2:1, 1:1, 1:2, 1:3, 1:6) bei der Koverdampfung von ZnPc und C60 angewendet. GIXRD Messungen zeigen, dass hier der bevorzugte Kristallisationsprozess von C60 Molekülen die treibende Kraft für eine effiziente Phasenseparation ist. Solarzellen, die ZnPc:C60 Mischschichten mit verbesserter Phasenseparation enthalten (Tsub=140°C, 1:1), zeigen eine verbesserte Ladungsträgerextraktion und somit eine höhere Effizienz von 3,0% im Vergleich zu 2,5% für die entsprechende Referenzsolarzelle (Tsub=30°C, 1:1). Im zweiten Teil der Arbeit wird der Einfluss der Molekülorientierung auf die Dünnschichtabsorption beispielhaft an ZnPc und Diindenoperylen (DIP) untersucht. DIP und ZnPc Moleküle, die auf schwach wechselwirkenden Substraten wie Glas, SiO2, amorphen organischen Transportschichten oder C60 aufgedampft sind, zeigen eine eher stehende Orientierung innerhalb der Dünnschicht in Bezug zur Substratoberfläche. Im Gegensatz dazu führt die Abscheidung auf stark wechselwirkenden Substraten, wie z.B. einer Gold- oder Silberschicht oder 0.5 nm bis 2 nm dünnen PTCDA (3,4,9,10-Perylentetracarbonsäuredianhydrid) Templatschichten laut GIXRD und VASE Messungen dazu, dass sich die ZnPc und DIP Moleküle eher flach liegend orientieren. Dies führt zu einer wesentlich besseren Dünnschichtabsorption da das molekulare Übergangsdipolmoment jeweils innerhalb der Ebene des ZnPc und des DIP Moleküls liegt. Ein Einbetten von Gold- oder Silberzwischenschichten in organischen Solarzellen führt leider zu keinen klaren Abhängigkeiten, da die verbesserte Absorption durch die flach liegenden Moleküle von Mikrokavitäts- und plasmonischen Effekten überlagert wird. Ebenso wenig führte das Einfügen einer PTCDA-Zwischenschicht in organischen Solarzellen zum Erfolg, da hier Transportbarrieren den Effekt der verbesserten Absorption überlagern. Das letzte Kapitel konzentriert sich auf den Einfluss der Molekülstruktur auf das Dünnschichtwachstum am Beispiel von DIP und dessen Derivaten Ph4-DIP und P4-Ph4-DIP, Isoviolanthron und Bis-nFl-NTCDI (N,N-Bis(fluorene-2-yl)-naphthalenetetra-carboxylic Diimid) Derivaten. GIXRD Messungen belegen deutlich, dass die sterischen Behinderungen, hervorgerufen durch die Phenylringe (für Ph4-DIP und P4-Ph4-DIP) und Seitenketten (für Bis-nFl-NTCDI), ein amorphes Schichtwachstum induzieren. Im Vergleich sind die Dünnschichten von DIP und Bis-HFl-NTCDI kristallin. Bezüglich der Molekülorientierung und folglich der Absorption von DIP und dessen Derivaten kann ein starker Einfluss des Schichtwachstums beobachtet werden. In Solarzellen verhindert die Präsenz der Phenylringe eine effiziente Phasenseparation der Mischschichten aus (P4-)Ph4-DIP:C60, was zu einer verschlechterten Ladungsträgerextraktion und damit zu einem reduzierten Füllfaktor (FF) von 52% im Vergleich zu dem entsprechender DIP:C60 Solarzellen mit FF=62% führt Die Untersuchungen an der Bis-nFl-NTICDI Serie zeigen ein ähnliches Ergebnis: Auch hier zeichnen sich die amorphen Schichten aus Bis-nFl-NTCDI Molekülen mit Seitenketten durch schlechtere Transporteigenschaften aus als nanokristalline Bis-HFl-NTCDI Schichten. / The aim of this thesis is to demonstrate correlations between the molecular structure of small organic molecules, their arrangement in thin films, and the solar cell performance. For structure analysis of the organic thin films, the combination of variable angle spectroscopic ellipsometry (VASE) and grazing incidence X-ray diffraction (GIXRD) as complementary methods turned out to be a powerful combination. Using both methods, it is possible to obtain information about the crystallinity, crystallite size, intermolecular arrangement, mean molecular orientation, optical constants n and k, and phase separation within thin films. In addition, the topography of thin films is analyzed by atomic force microscopy. First, the thin film morphology of pristine zinc-phthalocyanine (ZnPc) films deposited at different substrate temperatures (Tsub=30°C, 60°C, 90°C) and for varying film thicknesses (5, 10, 25, 50 nm) is investigated. The ZnPc films grow highly crystalline with an upright standing molecular orientation with respect to the substrate surface for all investigated Tsub and all film thicknesses. In effcient organic solar cells, donor and acceptor molecules are commonly co-deposited to form a blend absorber film. This is usually accompanied by a certain phase separation between donor and acceptor molecules leads to a formation of percolation paths necessary to extract electrons and holes towards the electrodes. For ZnPc:C60 blends the origin of this phase separation process is analyzed by investigating different degrees of phase separation induced by film deposition at different Tsub (30°C, 100°C, 140°C) and for different blend ratios (6:1, ... , 1:6 (vol%)). GIXRD measurements indicate that the preferred crystallization of C60 is the driving force for good phase separation. Solar cells with improved phase separation of ZnPc:C60 blends (Tsub=140°C, 1:1) reveal a better charge carrier extraction and thus enhanced effciencies of 3.0% in comparison to 2.5% for the reference device (Tsub=30°C, 1:1). In the second part, the impact of molecular orientation within the absorber thin films on light harvesting is examined for pristine ZnPc and diindenoperylene (DIP) films. For film deposition on weakly interacting substrates like glass, SiO2, amorphous organic transport films, or C60, the orientation of DIP and ZnPc molecules is found to be upright standing. In contrast, GIXRD and VASE measurements show that films deposited onto strongly interacting substrates like Au and Ag, as well as on thin PTCDA templating layers lead to nearly flat-lying ZnPc and DIP molecules. Since the molecular transition dipole moment is oriented in the plane of the DIP and ZnPc molecules, the light absorption in films with flat-lying molecules is strongly improved. Unfortunately, an implementation of Au or Ag sublayers in organic solar cells does not result in reliable dependencies since the enhanced absorption by an improved molecular orientation is superimposed by different effects like microcavity and plasmonic effects. The implementation of PTCDA interlayers leads to transport barriers making the solar cell data interpretation difficult. In the last part, the influence of molecular structure on thin film growth is studied for DIP and its derivatives Ph4-DIP and P4-Ph4-DIP, isoviolanthrone, and Bis-nFl-NTCDI derivatives. GIXRD measurements reveal that steric hindrance is induced by the addition of side chains (for Bis-nFl-NTCDI) and phenyl rings (for Ph4-DIP and P4-Ph4-DIP) (N,N-Bis(fluorene-2-yl)-naphthalenetetra-carboxylic diimide) leading to an amorphous thin film growth. In contrast, DIP films and Bis-HFl-NTCDI films are found to be crystalline. The mean molecular orientation and hence the absorption is strongly affected by the different growth modes of DIP and its derivatives. In OSC, the presence of the phenyl rings prevents an effcient phase separation for (P4-)Ph4-DIP:C60 blends which causes diminished charge extraction in comparison to the crystalline DIP:C60 blends. For the Bis-nFl-NTCDI series, the transport properties are significantly worse in the amorphous films composed of Bis-nFl-NTCDI derivatives with alkyl chains in comparison to the nanocrystalline films made of the bare Bis-HFl-NTCDI.
6

Organic Small Molecules: Correlation between Molecular Structure, Thin Film Growth, and Solar Cell Performance

Schünemann, Christoph 09 January 2013 (has links)
Das wesentliche Ziel dieser Doktorarbeit ist es, die Zusammenhänge zwischen der Struktur von kleinen organischen Molekülen, deren Anordnung in der Dünnschicht und der Effizienz organischer Solarzellen zu beleuchten. Die Kombination der komplementären Methoden spektroskopischer Ellipsometrie (VASE) und Röntgenstreuung, vor allem der unter streifendem Einfall (GIXRD), hat sich als sehr effiient für die Strukturuntersuchungen organischer Dünnschichten erwiesen. Zusammen geben sie einen detailreichen Einblick in die intermolekulare Anordnung, die Kristallinität, die molekulare Orientierung, die optischen Konstanten n und k und die Phasenseparation von organischen Schichten. Zusätzlich wird die Topografie der organischen Dünnschicht mit Rasterkraftmikroskopie untersucht. Der erste Fokus liegt auf der Analyse des Dünnschichtwachstums von Zink-Phthalocyanin (ZnPc) Einzelschichten. Für alle untersuchten Schichtdicken (5, 10, 25, 50 nm) und Substrattemperaturen (Tsub=30°C, 60°C, 90°C) zeigt ZnPc ein kristallines Schichtwachstum mit aufrecht stehenden ZnPc Molekülen. Um effiziente organische Solarzellen herzustellen, werden Donor- und Akzeptormoleküle üblicherweise koverdampft. Bei der Mischung von Donor- und Akzeptormolekülen bildet sich eine gewisse Phasenseparation aus, deren Form wesentlich für die Ladungsträgerextraktion entlang der Perkolationpfade ist. Der Ursprung dieser Phasenseparation wird innerhalb dieser Arbeit experimentell für ZnPc:C60 Absorber-Mischschichten untersucht. Um die Ausprägung der Phasenseparation zu variieren, werden verschiedene Tsub (30°C, 100°C, 140°C) und Mischverhältnisse (6:1, 3:1, 2:1, 1:1, 1:2, 1:3, 1:6) bei der Koverdampfung von ZnPc und C60 angewendet. GIXRD Messungen zeigen, dass hier der bevorzugte Kristallisationsprozess von C60 Molekülen die treibende Kraft für eine effiziente Phasenseparation ist. Solarzellen, die ZnPc:C60 Mischschichten mit verbesserter Phasenseparation enthalten (Tsub=140°C, 1:1), zeigen eine verbesserte Ladungsträgerextraktion und somit eine höhere Effizienz von 3,0% im Vergleich zu 2,5% für die entsprechende Referenzsolarzelle (Tsub=30°C, 1:1). Im zweiten Teil der Arbeit wird der Einfluss der Molekülorientierung auf die Dünnschichtabsorption beispielhaft an ZnPc und Diindenoperylen (DIP) untersucht. DIP und ZnPc Moleküle, die auf schwach wechselwirkenden Substraten wie Glas, SiO2, amorphen organischen Transportschichten oder C60 aufgedampft sind, zeigen eine eher stehende Orientierung innerhalb der Dünnschicht in Bezug zur Substratoberfläche. Im Gegensatz dazu führt die Abscheidung auf stark wechselwirkenden Substraten, wie z.B. einer Gold- oder Silberschicht oder 0.5 nm bis 2 nm dünnen PTCDA (3,4,9,10-Perylentetracarbonsäuredianhydrid) Templatschichten laut GIXRD und VASE Messungen dazu, dass sich die ZnPc und DIP Moleküle eher flach liegend orientieren. Dies führt zu einer wesentlich besseren Dünnschichtabsorption da das molekulare Übergangsdipolmoment jeweils innerhalb der Ebene des ZnPc und des DIP Moleküls liegt. Ein Einbetten von Gold- oder Silberzwischenschichten in organischen Solarzellen führt leider zu keinen klaren Abhängigkeiten, da die verbesserte Absorption durch die flach liegenden Moleküle von Mikrokavitäts- und plasmonischen Effekten überlagert wird. Ebenso wenig führte das Einfügen einer PTCDA-Zwischenschicht in organischen Solarzellen zum Erfolg, da hier Transportbarrieren den Effekt der verbesserten Absorption überlagern. Das letzte Kapitel konzentriert sich auf den Einfluss der Molekülstruktur auf das Dünnschichtwachstum am Beispiel von DIP und dessen Derivaten Ph4-DIP und P4-Ph4-DIP, Isoviolanthron und Bis-nFl-NTCDI (N,N-Bis(fluorene-2-yl)-naphthalenetetra-carboxylic Diimid) Derivaten. GIXRD Messungen belegen deutlich, dass die sterischen Behinderungen, hervorgerufen durch die Phenylringe (für Ph4-DIP und P4-Ph4-DIP) und Seitenketten (für Bis-nFl-NTCDI), ein amorphes Schichtwachstum induzieren. Im Vergleich sind die Dünnschichten von DIP und Bis-HFl-NTCDI kristallin. Bezüglich der Molekülorientierung und folglich der Absorption von DIP und dessen Derivaten kann ein starker Einfluss des Schichtwachstums beobachtet werden. In Solarzellen verhindert die Präsenz der Phenylringe eine effiziente Phasenseparation der Mischschichten aus (P4-)Ph4-DIP:C60, was zu einer verschlechterten Ladungsträgerextraktion und damit zu einem reduzierten Füllfaktor (FF) von 52% im Vergleich zu dem entsprechender DIP:C60 Solarzellen mit FF=62% führt Die Untersuchungen an der Bis-nFl-NTICDI Serie zeigen ein ähnliches Ergebnis: Auch hier zeichnen sich die amorphen Schichten aus Bis-nFl-NTCDI Molekülen mit Seitenketten durch schlechtere Transporteigenschaften aus als nanokristalline Bis-HFl-NTCDI Schichten. / The aim of this thesis is to demonstrate correlations between the molecular structure of small organic molecules, their arrangement in thin films, and the solar cell performance. For structure analysis of the organic thin films, the combination of variable angle spectroscopic ellipsometry (VASE) and grazing incidence X-ray diffraction (GIXRD) as complementary methods turned out to be a powerful combination. Using both methods, it is possible to obtain information about the crystallinity, crystallite size, intermolecular arrangement, mean molecular orientation, optical constants n and k, and phase separation within thin films. In addition, the topography of thin films is analyzed by atomic force microscopy. First, the thin film morphology of pristine zinc-phthalocyanine (ZnPc) films deposited at different substrate temperatures (Tsub=30°C, 60°C, 90°C) and for varying film thicknesses (5, 10, 25, 50 nm) is investigated. The ZnPc films grow highly crystalline with an upright standing molecular orientation with respect to the substrate surface for all investigated Tsub and all film thicknesses. In effcient organic solar cells, donor and acceptor molecules are commonly co-deposited to form a blend absorber film. This is usually accompanied by a certain phase separation between donor and acceptor molecules leads to a formation of percolation paths necessary to extract electrons and holes towards the electrodes. For ZnPc:C60 blends the origin of this phase separation process is analyzed by investigating different degrees of phase separation induced by film deposition at different Tsub (30°C, 100°C, 140°C) and for different blend ratios (6:1, ... , 1:6 (vol%)). GIXRD measurements indicate that the preferred crystallization of C60 is the driving force for good phase separation. Solar cells with improved phase separation of ZnPc:C60 blends (Tsub=140°C, 1:1) reveal a better charge carrier extraction and thus enhanced effciencies of 3.0% in comparison to 2.5% for the reference device (Tsub=30°C, 1:1). In the second part, the impact of molecular orientation within the absorber thin films on light harvesting is examined for pristine ZnPc and diindenoperylene (DIP) films. For film deposition on weakly interacting substrates like glass, SiO2, amorphous organic transport films, or C60, the orientation of DIP and ZnPc molecules is found to be upright standing. In contrast, GIXRD and VASE measurements show that films deposited onto strongly interacting substrates like Au and Ag, as well as on thin PTCDA templating layers lead to nearly flat-lying ZnPc and DIP molecules. Since the molecular transition dipole moment is oriented in the plane of the DIP and ZnPc molecules, the light absorption in films with flat-lying molecules is strongly improved. Unfortunately, an implementation of Au or Ag sublayers in organic solar cells does not result in reliable dependencies since the enhanced absorption by an improved molecular orientation is superimposed by different effects like microcavity and plasmonic effects. The implementation of PTCDA interlayers leads to transport barriers making the solar cell data interpretation difficult. In the last part, the influence of molecular structure on thin film growth is studied for DIP and its derivatives Ph4-DIP and P4-Ph4-DIP, isoviolanthrone, and Bis-nFl-NTCDI derivatives. GIXRD measurements reveal that steric hindrance is induced by the addition of side chains (for Bis-nFl-NTCDI) and phenyl rings (for Ph4-DIP and P4-Ph4-DIP) (N,N-Bis(fluorene-2-yl)-naphthalenetetra-carboxylic diimide) leading to an amorphous thin film growth. In contrast, DIP films and Bis-HFl-NTCDI films are found to be crystalline. The mean molecular orientation and hence the absorption is strongly affected by the different growth modes of DIP and its derivatives. In OSC, the presence of the phenyl rings prevents an effcient phase separation for (P4-)Ph4-DIP:C60 blends which causes diminished charge extraction in comparison to the crystalline DIP:C60 blends. For the Bis-nFl-NTCDI series, the transport properties are significantly worse in the amorphous films composed of Bis-nFl-NTCDI derivatives with alkyl chains in comparison to the nanocrystalline films made of the bare Bis-HFl-NTCDI.
7

Level set methods for higher order evolution laws

Stöcker, Christina 20 February 2008 (has links)
A numerical treatment of non-linear higher-order geometric evolution equations with the level set and the finite element method is presented. The isotropic, weak anisotropic and strong anisotropic situation is discussed. Most of the equations considered in this work arise from the field of thin film growth. A short introduction to the subject is given. Four different models are discussed: mean curvature flow, surface diffusion, a kinetic model, which combines the effects of mean curvature flow and surface diffusion and includes a further kinetic component, and an adatom model, which incorporates in addition free adatoms. As an introduction to the numerical schemes, first the isotropic and weak anisotropic situation is considered. Then strong anisotropies (non-convex anisotropies) are used to simulate the phenomena of faceting and coarsening. The experimentally observed effect of corner and edge roundings is reached in the simulation through the regularization of the strong anisotropy with a higher-order curvature term. The curvature regularization leads to an increase by two in the order of the equations, which results in highly non-linear equations of up to 6th order. For the numerical solution, the equations are transformed into systems of second order equations, which are solved with a Schur complement approach. The adatom model constitutes a diffusion equation on a moving surface. An operator splitting approach is used for the numerical solution. In difference to other works, which restrict to the isotropic situation, also the anisotropic situation is discussed and solved numerically. Furthermore, a treatment of geometric evolution equations on implicitly given curved surfaces with the level set method is given. In particular, the numerical solution of surface diffusion on curved surfaces is presented. The equations are discretized in space by standard linear finite elements. For the time discretization a semi-implicit discretization scheme is employed. The derivation of the numerical schemes is presented in detail, and numerous computational results are given for the 2D and 3D situation. To keep computational costs low, the finite element grid is adaptively refined near the moving curves and surfaces resp. A redistancing algorithm based on a local Hopf-Lax formula is used. The algorithm has been extended by the authors to the 3D case. A detailed description of the algorithm in 3D is presented in this work. / In der Arbeit geht es um die numerische Behandlung nicht-linearer geometrischer Evolutionsgleichungen höherer Ordnung mit Levelset- und Finite-Elemente-Verfahren. Der isotrope, schwach anisotrope und stark anisotrope Fall wird diskutiert. Die meisten in dieser Arbeit betrachteten Gleichungen entstammen dem Gebiet des Dünnschicht-Wachstums. Eine kurze Einführung in dieses Gebiet wird gegeben. Es werden vier verschiedene Modelle diskutiert: mittlerer Krümmungsfluss, Oberflächendiffusion, ein kinetisches Modell, welches die Effekte des mittleren Krümmungsflusses und der Oberflächendiffusion kombiniert und zusätzlich eine kinetische Komponente beinhaltet, und ein Adatom-Modell, welches außerdem freie Adatome berücksichtigt. Als Einführung in die numerischen Schemata, wird zuerst der isotrope und schwach anisotrope Fall betrachtet. Anschließend werden starke Anisotropien (nicht-konvexe Anisotropien) benutzt, um Facettierungs- und Vergröberungsphänomene zu simulieren. Der in Experimenten beobachtete Effekt der Ecken- und Kanten-Abrundung wird in der Simulation durch die Regularisierung der starken Anisotropie durch einen Krümmungsterm höherer Ordnung erreicht. Die Krümmungsregularisierung führt zu einer Erhöhung der Ordnung der Gleichung um zwei, was hochgradig nicht-lineare Gleichungen von bis zu sechster Ordnung ergibt. Für die numerische Lösung werden die Gleichungen auf Systeme zweiter Ordnungsgleichungen transformiert, welche mit einem Schurkomplement-Ansatz gelöst werden. Das Adatom-Modell bildet eine Diffusionsgleichung auf einer bewegten Fläche. Zur numerischen Lösung wird ein Operatorsplitting-Ansatz verwendet. Im Unterschied zu anderen Arbeiten, die sich auf den isotropen Fall beschränken, wird auch der anisotrope Fall diskutiert und numerisch gelöst. Außerdem werden geometrische Evolutionsgleichungen auf implizit gegebenen gekrümmten Flächen mit Levelset-Verfahren behandelt. Insbesondere wird die numerische Lösung von Oberflächendiffusion auf gekrümmten Flächen dargestellt. Die Gleichungen werden im Ort mit linearen Standard-Finiten-Elementen diskretisiert. Als Zeitdiskretisierung wird ein semi-implizites Diskretisierungsschema verwendet. Die Herleitung der numerischen Schemata wird detailliert dargestellt, und zahlreiche numerische Ergebnisse für den 2D und 3D Fall sind gegeben. Um den Rechenaufwand gering zu halten, wird das Finite-Elemente-Gitter adaptiv an den bewegten Kurven bzw. den bewegten Flächen verfeinert. Es wird ein Redistancing-Algorithmus basierend auf einer lokalen Hopf-Lax Formel benutzt. Der Algorithmus wurde von den Autoren auf den 3D Fall erweitert. In dieser Arbeit wird der Algorithmus für den 3D Fall detailliert beschrieben.

Page generated in 0.4412 seconds