• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 7
  • 7
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Energy Transfer in Organic-Inorganic Semiconductor Structures

Bianchi, Francesco 09 July 2018 (has links)
In HIOS-Strukturen, die auf einem Quantengraben und einer angrenzenden organischen Deckschicht basieren, wurde eine effiziente Umwandlung von Wannier-Exzitonen in Frenkel-Exzitonen mittels resonantem Förster Energietransfer (FRET) demonstriert. Das hier verwendete Design besteht aus einem spiro-annulierten Quarter-phenyl (L4P-SP3), das auf einen ZnO-Quantengraben (SQW) aufgewachsen wurde, um inkohärente Kopplung zu erreichen. Mittels optischer Spektroskopie haben wir demonstriert, dass diese hybriden Strukturen Energietransfer vom SQW zu den organischen Molekülen mit einer Effizienz von bis zu 77% zeigen. Allerdings zeigen UPS-Messungen eine typ-II-artige Energieniveau-Anpassung zwischen ZnO und der molekularen Schicht, die zu einem sehr effizienten Ladungstrennungsvorgang (ηCT=0.9) führt, der die molekulare Emission unterdrückt. Die erste beruht auf einer schnellen und hocheffizienten Energietransfer-Kaskade: nach der ersten Transferstufe wird die Anregungsenergie von der hybriden Grenzfläche weggeleitet, indem eine zweite Energietransferstufe eingeführt wird, bevor die Dissoziation der Exzitonen an der Grenzfläche statt-finden kann. Wir verwenden Sexiphenyl, L6P als endgültigen Akzeptor. In solch einer Struktur können wir eine Wiederherstellung der molekularen Emission um einen Faktor acht demonstrieren und zeigen, dass der Energietransferprozess zwischen L4P-SP3 und L6P den Ladungstrennungsprozess fast vollständig überholt. Als andere Option haben wir die Energieniveaus angepasst, indem eine organometallische Donor-Monolage [RuCp*mes] ergänzt wird. Diese Zwischenschicht senkt die Austrittsarbeit von ZnO deutlich ab und führt so zu einer Anpassung der Niveaus zwischen die zwei Halbleiter. Während die Effizienz des Energietransfers unverändert bleibt, steigen die Emission von L4P-SP3 sowie die Lebenszeit der molekularen Photoluminescenz um einen Faktor sieben verglichen mit entsprechenden Strukturen ohne Zwischenlage. / In HIOS structures based on a quantum well and an adjacent organic overlayer, efficient conversion of Wannier excitons into Frenkel excitons via Förster-type resonant energy transfer (FRET) has been demonstrated. The design here in use consists of a spiro-annulated ladder-type quarter-phenyl (L4P-SP3), deposited on ZnO-based single quantum wells (SQW) to obtain incoherent electronic coupling. The SQWs we use are grown with extremely thin (2 nm) capping layer. With photoluminescence excitation and time-resolved spectroscopy, we demonstrate that these hybrid structures exhibit energy transfer from the inorganic material to the organic molecules with an efficiency up to 77%. However, UPS measurements show a type-II energy level alignment between ZnO and the molecular layer, resulting in a very efficient charge separation process (ηCT=0.9) that suppresses the molecular emission. The first idea relies on a fast and highly efficient cascade FRET: following the primary transfer step from the QW, the excitation is conveyed away from the hybrid interface by a secondary transfer-step within the organic layer. As final acceptor we select ladder-type sexiphenyl (L6P). In such a structure, we demonstrate a recovery of the molecular emission by a factor eight, showing that the intermolecular FRET outpaced almost entirely the charge separation process. As alternative option, we tune the energy levels at the interface by introducing an organometallic donor monolayer [RuCp*mes]. The interlayer reduces substantially the ZnO work function, aligning the frontier levels of the inorganic and organic semiconductor. Optical experiments show the benefits of the interlayer: while the FRET efficiency is unaffected, the L4P-SP3 emission and its photoluminescence lifetime increase by a factor of seven, when compared to the same structure without interlayer.
2

Hybrid Charge Transfer States at Inorganic/Organic Interfaces and their Role in Photovoltaic Charge Generation

Eyer, Moritz 22 August 2018 (has links)
In dieser Arbeit wird ein grundlegender Rahmen für das Verständnis von photovoltaischer Ladungserzeugung an Grenzflächen zwischen einem Metalloxid und einem organischen Halbleiter geschaffen. Dabei wird gezeigt, dass hybride Ladungstransferzustände (HCTS) eine entscheidende Rolle im Energieumwandlungsprozess spielen. Vor ihrer endgültigen Trennung bleiben Elektronen und Löcher an gegenüberliegenden Seiten der Grenzfläche durch Coulomb-Interaktion aneinander gebunden. Nur wenn die Trennung eines solchen HCTS gelingt, kann es zu einem Photostrom beitragen. Die planaren Schichtsysteme ZnO/P3HT, ZnMgO/P3HT und SnO2/P3HT dienen als Modellsystem für eine ausführliche Studie über Energiestruktur der Grenzfläche, photovoltaische Energieumwandlung und die damit verbundenen Verluste. Es wird gezeigt, dass ein HCTS aus einem Elektron im Leitungsband des Metalloxids und einem Loch im HOMO des Polymers besteht. Folglich ist seine Entstehung eine intrinsische Eigenschaft von allen derartigen Grenzflächen. Elektrolumineszenzspektroskopie (EL) stellt sich als wirksame Methode zur Untersuchung von HCTS dar. Deren strahlende Rekombination produziert ein breites Signal im nahen Infrarotbereich. Spannungsabhängige EL-Messungen zeigen den hohen Grad an Delokalisierung von beiden Ladungsträgern in einem HCTS. EL-Spektren, die über einen weiten Temperaturbereich aufgenommen wurden, zeigen, dass nichtstrahlende Prozesse mit Abstand der dominierende Zerfallsmechanismus für HCTS bei Zimmertemperatur sind. Ein Modell aus mehreren Schritten für den Stromerzeugungsprozess kann aus temperaturabhängigen photovoltaischen Messungen abgeleitet werden. Hierbei wird deutlich, dass die Bindungsenergie von Elektron und Loch in einem HCTS keine bedeutende Einschränkung für die Leistungsfähigkeit einer Solarzelle darstellt. Die einflussreiche Rolle von nichtstrahlenden Zerfallsprozessen verursacht jedoch in allen untersuchten Materialsystemen schwere Verluste. / In this work, a fundamental framework for the understanding of photovoltaic charge generation at metal-oxide/organic hybrid interfaces is established. It is shown that hybrid charge transfer states (HCTS) play a crucial role in the power conversion process. Prior to full charge separation, pairs of electrons and holes situated at opposite sides of the heterojunction remain bound to each other by Coulomb interaction. Only if an HCTS is dissociated, a contribution to a photocurrent can be made. Planar heterojunctions of the material combinations ZnO/P3HT, ZnMgO/P3HT, and SnO2/P3HT serve as model systems for a broad investigation of interface energetics, photovoltaic power conversion and the loss processes therein. It is shown that an HCTS consists of an electron in the conduction band of the metal-oxide and a hole in the HOMO of the polymer. Consequently, its formation is an intrinsic property of all heterojunctions of that kind. Electroluminescence (EL) spectroscopy proves to be a powerful tool in the analysis of HCTS. Their radiative recombination produces a broad signal in the near-infrared spectral range. Voltage-dependent EL measurements reveal a high degree of delocalization of both carriers in an HCTS, whereas EL spectra recorded over a wide range of temperatures show that non-radiative processes are by far the dominant recombination channel for HCTS at room temperature. A multistep model of the charge generation process is derived from temperature-dependent photovoltaic measurements. It becomes apparent that the binding energy of electron and hole in an HCTS does not impose a significant limitation on device performance. The strong presence of non-radiative decay processes, however, causes severe losses for all material systems that are investigated in this work.
3

Electronic and electrical properties of organic semiconductor/metal nanoparticles structures

Ligorio, Giovanni 13 July 2016 (has links)
Der zunehmende Bedarf nach digitalen Speichermedien macht die Erforschung von neuen Materialien für zukünftige Technologien von nichtflüchtigen Speichern nötig. Hierfür eignen sich zum Beispiel Metall-Nanopartikel, die in organischen Halbleiterschichten eingebettet sind. Aufgrund der bistabilen Schaltbarkeit der Leitfähigkeit von Metall-Nanopartikeln lassen sie sich in Abhängigkeit der elektrischen Umgebungsbedingungen entweder in einen niedrig- oder einen hochleitenden Zustand schalten. Bisher wurden verschiedene Modelle entwickelt, um den Schaltmechanismus von Speichern mit einem organischen Matrixmaterial zu erklären, jedoch fehlt bislang ein konsistentes Bild zum Verständnis des Schaltvorgangs. Die vorliegende Arbeit  untersucht die Rolle des Raumladungsfeldes ausgehend von Metall-Nanopartikeln in Bauelementen. Dazu wurde eine Reihe von Experimenten zur Bestimmung der elektronischen und elektrischen Eigenschaften durchgeführt, um die tatsächliche Rolle des Raumladungsfeldes aufzuklären. Mit Hilfe von Röntgen- und UV-Photoelektronenspektroskopie wurde die Wechselwirkung zwischen den Metall-Nanopartikeln und den prototypischen organischen Halbleiterschichten detailliert untersucht. Unter Verwendung der bereits untersuchten Materialien wurden Bauelemente hergestellt und charakterisiert. Die Ergebnisse zeigen, dass der allgemein vorgeschlagene Mechanismus bezüglich der Aufladung/Entladung von Metall-Nanopartikeln als Ursache für die elektrische Bistabiliät in einem zweipoligen Bauteil ausgeschlossen werden kann. Stattdessen stützt dieses Ergebnis den alternativen Mechanismus der Filamentbildung. Zur Untersuchung der Skalierbarkeit der Speicher im Nanometerbereich wurden die Strukturen durch das Abscheiden der Materialien bei streifendem Einfall präpariert. Die entsprechenden Nanospeicher wurden elektrisch charakterisiert und zeigten Bistabilität. Folglich sind diese Nanspeicher besonders attraktiv für zukünftige Technologien in Hinblick auf hohe Speicherdichten. / The increasing need to store digital information has triggered research into the exploration of new materials for future non-volatile memory (NVM) technologies. For instance, metal nanoparticles (MNPs) embedded into organic semiconductors are suitable for novel memory applications because they were found to display bistable resistive switching. Different switching models were hitherto developed to explain the fundamental mechanisms at work in resistive NVMs. This thesis explores specifically the role of space-charge field due to the charging of MNPs as rationale for resistive switching in two-terminal devices. A series of experiments on the electronic and electrical properties of devices were conducted in order to reveal whether this mechanism is, indeed, at play in resistance switching. Photoelectron spectroscopy provided detailed information about the interaction between gold nanoparticles (AuNPs) with prototypical organic semiconductors used in optoelectronics. The study of the electronic valence structures provided evidence of a space-charge due to the charging of AuNPs. Furthermore, it is found that charge-neutrality of AuNPs can be dynamically re-established upon illumination, through electron transfer from excitons. Devices were built with the same materials investigated by photoemission spectroscopy and electrical characterization was conducted. Despite the previously demonstrated ability to optically change the charging state of the AuNPs, the devices do not display any bistability. This finding provides evidence that the commonly proposed charging/decharging mechanism of MNPs can be excluded as cause for electrical bistability in NVM devices. In order to explore the scaling of resistive NVMs into the nanometric range, glancing angle deposition technique was employed. The nano-NVMs were electrically characterized and it is proved to manifest resistive bistability. These finding make nano-NVMs highly appealing for future high-density memory technology.
4

Energy level alignment mechanisms at inorganic-organic semiconductor interfaces investigated with photoelectron spectroscopy

Schultz, Thorsten 08 January 2019 (has links)
Hybride anorganische/organische Systeme (HIOS) sind von großem Interesse für Grundlagenforschung und neue (opto)-elektronische Bauteile. Um effiziente Bauteile zu entwickeln, ist ein Verständnis der Energielevelanordnung (ELA) an der Grenzfläche von entscheidender Bedeutung. Es wird demonstriert, wie Oberflächen mit heterogener Austrittsarbeit die Resultate von ultravioletter Photoelektronenspektroskopie (UPS) beeinflussen. Durch den Vergleich experimenteller Daten mit Berechnungen zeigt sich, dass das lokale elektrostatische Potential oberhalb der Oberfläche zur Ausbildung einer zusätzlichen Energiebarriere für Elektronen über Bereichen mit niedriger Austrittsarbeit führt, was die gemessene Sekundärelektronenkante zu höheren kinetischen Energien verschiebt. Der Einfluss von Streifengröße und experimentellen Parametern wird theoretisch und experimentell gezeigt. Im zweiten Teil dieser Arbeit wird gezeigt, wie man dünne organische Donator/Akzeptor Zwischenschichten nutzen kann, um die ELA zwischen typischen anorganischen und organischen Halbleitern zu kontrollieren. Die Austrittsarbeit von anorganischen Substraten lässt sich so zwischen 2.2-6.0 eV variieren. Der Einfluss von Zuständen in der Bandlücke des anorganischen Halbleiters auf die Bandverbiegung wird im Detail untersucht und es wird ein Model vorgeschlagen, welches das Pinning des Fermi-Niveaus an diesen Zuständen beschreibt. Es wird experimentell gezeigt, dass die Dotierung des anorganischen Halbleiters kaum Einfluss auf die ELA hat. Weiterhin wird die ELA zwischen dem Übergangsmetall-Dichalcogenid WSe2 und dem organischen Akzeptor C60F48 untersucht. Mit Hilfe von STM und STS Messungen wurde gezeigt, dass C60F48 geschlossene Domänen auf WSe2 bei Bedeckung mit Submonolagen bildet und dass sich die Energielevel von WSe2 drastisch ändern. Durch Auswerten der Potentialänderung als Funktion des Abstandes von einer C60F48 Kante im STS konnte die Thomas-Fermi-Abschirmlänge von WSe2 auf etwa 2 nm bestimmt werden. / Hybrid inorganic/organic systems (HIOS) have attracted a lot of interest for fundamental studies and novel (opto)-electronic devices during the past decade. For developing efficient devices, an understanding and control of the energy level alignment (ELA) at the hybrid interface is of paramount importance. Firstly, it is demonstrated how surfaces with non-uniform local work function influence the measurement results obtained by ultraviolet photoelectron spectroscopy (UPS). By comparing the measured results with calculations, it is found that the electrostatic potential above the surface leads to an additional energy barrier for electrons above low work function areas, shifting the secondary electron cut-off (SECO) to higher kinetic energies in UPS (averaging effect). The influence of pattern size and measurement conditions on the SECO is shown theoretically and experimentally. In the second part it is shown how thin organic donor/acceptor interlayers can be employed to manipulate the ELA between prototypical inorganic and organic semiconductors. The work function of the inorganic substrate can be tuned between 2.2-6.0 eV. The influence of gap states within the inorganic band gap on the band bending change is investigated in detail and a model is proposed, which describes the pinning of the inorganic energy levels as a function of surface state density. It is further shown experimentally that the bulk doping concentration of the inorganic semiconductor has only little effect on the energetic alignment. Finally, the ELA of the transition metal dichalcogenide monolayer WSe2 with the organic acceptor molecule C60F48 is investigated. Using STM and STS measurements, it is revealed that the C60F48 forms domains on WSe2 in the sub-monolayer regime. By evaluating the potential change as a function of distance from a C60F48 edge in STS, it is possible to derive a value for the Thomas-Fermi screening length of WSe2 of about 2 nm.
5

The relation between the deposition process and the structural, electronic, and transport properties of magnetron sputtered doped ZnO and Zn1-xMgxO films

Bikowski, Andre 03 July 2014 (has links)
In dieser Dissertation wurde die Beziehung zwischen den strukturellen, optischen und Ladungstransporteigenschaften von dotierten ZnO- und Zn1-xMgxO-Schichten eingehend untersucht. Das Ziel war es, die oben genannten Zusammenhänge weiter aufzuklären, wodurch sich anschließend Ansätze für eine zielgerichtete Verbesserung der Schichteigenschaften ableiten lassen. Zunächst konzentriert sich die Arbeit auf das Wachstum der ZnO-Schichten, um wichtige strukturelle Parameter, wie zum Beispiel Korngrößen und Defektdichten, mittels Röntgendiffraktometrie und Transmissionselektronenmikroskopie zu bestimmen. Diese strukturellen Parameter wurden dann als Modellparameter für die theoretische Modellierung des Transports der freien Ladungsträger verwendet. Temperaturabhängige Hall-, Leitfähigkeits- und Seebeck-Koeffizient-Messungen zeigten, dass der elektrische Transport hauptsächlich durch die Streuung der Ladungsträger an ionisierten Störstellen und Korngrenzen limitiert wird. Im Rahmen dieser Arbeit wurde die theoretische Beschreibung der Streuung an Korngrenzen auf entartet dotierte Halbleiter erweitert. Diese Ergebnisse wurden dann genutzt, um ein qualitatives Modell zu formulieren, welches den Zusammenhang zwischen dem Magnetron-Sputter-Abscheidungsprozess und den strukturellen und elektrischen Eigenschaften der Schichten herstellt. Gemäß diesem Modell sind die Schichteigenschaften bei niedrigen Abscheidungstemperaturen hauptsächlich durch die Bildung akzeptoratiger Sauerstoffzwischengitterdefekte bestimmt, die einen Teil der extrinsischen Dotanden kompensieren. Diese Defekte werden durch ein Bombardement der wachsenden Schicht mit hochenergetischen negativen Sauerstoffionen verursacht. Bei höheren Abscheidungstemperaturen dominiert die Bildung von sekundären Phasen oder Defektkomplexen, in denen der Dotant elektrisch inaktiv ist. / In this thesis, the relation between the structural, optical, and charge carrier transport properties of magnetron sputtered doped ZnO and Zn1-xMgxO films has been investigated in detail. The objective was to clarify the above mentioned relations, which allows to derive solutions for a deliberate improvement of the layer properties. The work first focusses on the growth of the ZnO layers to determine important structural properties like grain sizes and defect densities via X-ray diffraction and transmission electron microscopy investigations. These structural properties were then used as model parameters for the theoretical modelling of the charge carrier transport. The temperature dependent Hall, conductivity and Seebeck coefficient measurements show that the transport is mainly limited by grain boundary scattering and ionized impurity scattering. The theoretical description of the grain boundary scattering has been extended in this work to also include degenerate semiconductors. Based on the results on the structural and electronic properties, in a next step a qualitative model was developed which explains the correlation between the magnetron sputtering deposition process and the structural and electronic properties of the films. According to this model, the properties of the films are mainly influenced by the formation of electrically active acceptor-like oxygen interstitial defects at low deposition temperatures, which lead to a partial compensation of the extrinsic donors. These defects are caused by a bombardment of the growing film by high-energetic negative oxygen ions. At higher deposition temperatures, the formation of secondary phases or defect complexes, in which the dopant is electrically inactive, prevails.
6

Controlled molecular beam deposition of hybrid inorganic/organic semiconductor structures

Sparenberg, Mino 21 June 2018 (has links)
Zentrales Thema dieser Dissertation ist die Untersuchung anorganisch/organischer Hybridsysteme (HIOS) mit besonderem Fokus auf den speziellen Prozessen an der Grenzfläche beider Materialklassen. Organische Moleküle, in Verbindung mit anorganischen Halbleitern haben ein großes Potenzial für Anwendungen in zukünftigen optoelektronischen Hybridbauteilen, indem sie Vorteile zweier unterschiedlicher Welten kombinieren. Entscheidend für die Herstellung von hybriden Strukturen ist das Verständnis der Wechselwirkungen an der Grenzfläche zwischen organischem und anorganischem Material. In dieser Arbeit werden diese Wechselwirkungen analysiert, um eine Wachstumskontrolle an der Grenzfläche zwischen konjugierten organischen Molekül und anorganischem Halbleiter zu ermöglichen. Hierfür werden unterschiedliche Ansätze verfolgt: Im ersten Teil der Arbeit wird die Wechselwirkung des Modellsystems Sexiphenyl (6P) an der Grenzfläche zu ZnO untersucht, sowie das Wachstum des Moleküls mittels verschiedener Methoden kontrolliert. Das daraus gewonnene Wissen kann im zweiten Teil dazu verwendet werden einen hybriden ZnO/6P/ZnO-Stapel zu realisieren, bei dem die organische Schicht ohne Beeinträchtigung der Kristallstruktur, mit definierten Grenzflächen bis hin zur atomaren/molekularen Ebene, überwachsen werden kann. Der letzte Teil der Arbeit befasst sich mit der optischen Echtzeit-Beobachtung während des organischen Wachstums verschiedener Moleküle. Dadurch ist es möglich Veränderungen von Struktureigenschaften und Wechselwirkungen zwischen Molekülen und dem Substrat zerstörungsfrei zu bestimmen, während diese aufgewachsen werden. Hierdurch können schlussendlich mögliche Mechanismen aufgezeigt werden, um elektronische und optische Wechselwirkung an der Grenzfläche zwischen organischem Molekül und anorganischen Halbleitern zu analysieren, sowie Wachstumsprozesse weiter zu verstehen und kontrollieren. / The central subject of this thesis are hybrid inorganic/organic systems (HIOS) with a focus on the specific processes at the interface between the two material classes. Organic molecules used together with inorganic semiconductors, have a great potential for future optoelectronic applications in hybrid components, by combining the advantages of two dissimilar worlds. Decisive for the production of hybrid structures is the understanding of the interactions at the interface between organic and inorganic material. In this thesis, the interactions are analyzed to enable growth control at the interface between conjugated organic molecules and inorganic semiconductors. In the first part of the thesis, the interaction of the model system sexiphenyl (6P) at the interface with ZnO, as well as approaches to control the growth of the molecule are being investigated. The knowledge gained here is used in the second part to realize a hybrid ZnO/6P/ ZnO stack, in which the organic layer can be overgrown without affecting the crystal structure, exhibiting defined interfaces down to the atomic/molecular level. The last part of the thesis deals with real time optical observation during organic growth of different molecules. By this changes in structural properties and interactions between molecules and the substrate can be non-destructively determined as they are growing. Ultimately, a comprehensive insight into the optical and electronic interactions at the interface between organic molecules and inorganic semiconductors can be gained and possible control mechanisms are shown.
7

Ferromagnet-Halbleiter-Nanodrahtstrukturen

Hilse, Maria 27 August 2015 (has links)
Das Thema dieser Arbeit ist die Synthese von Ferromagnet-Halbleiter-Nanodraht-Strukturen in einer Kern-Hülle-Geometrie. Diese wird mittels Molekularstrahlepitaxie unter der Verwendung von GaAs und Fe3Si ausgeführt. Im Zentrum der Arbeit steht die Frage, ob sich mit derartigen Strukturen Magnetisierungen senkrecht zum Substrat realisieren lassen. Eine solche Konfiguration der Magnetisierung innerhalb bestimmter Strukturen ist wünschenswert, denn sie bildet die Grundlage einiger zukunftsweisender spintronischer Bauteilkonzepte. Aufgrund der Formanisotropie dünner Schichten ist diese Konfiguration der Magnetisierung in planaren Strukturen nur mit erheblichem Aufwand zu bewerkstelligen. Bildet sich hingegen in den Nanodraht-Hüllen eine Stabmagnetisierung aus, so führt dies direkt zur gewünschten senkrechten Magnetisierung. Im ersten Teil dieser Arbeit wird der Epitaxie-Prozess vorgestellt. Abhängig von den Wachstumsparametern können Hüllen mit glatten Seitenflachen, einer hohen Kristallordnung, ebenen Grenzflachen zum GaAs-Kern und epitaktischer Ausrichtung realisiert werden. Der zweite Teil behandelt die magnetischen Eigenschaften der Nanodrahte. Ensemble-Charakterisierungen sind hierbei in diesem Fall nicht geeignet. Einzeldraht-Messungen hingegen zeigen, dass sich in den Nanodraht-Hüllen wie erhofft eine Stabmagnetisierung ausbildet. Der dritte und letzte Teil dieser Dissertation umfasst die Einführung mehrerer zukunftsweisender Bauteilkonzepte, basierend auf den speziellen magnetischen Eigenschaften der hier vorgestellten Nanodrahte. Dazu gehören dreidimensionale Speicherarchitekturen mit bislang unerreichten Speicherkapazitäten und zirkular polarisiertes Licht emittierende Leuchtdioden für einen enorm schnellen Spininformations-Transfer zur Intrachip-Kommunikation. / The subject of the present work is the synthesis of ferromagnet-semiconductor coreshell nanowires. To realize such structures molecular beam epitaxy has been employed. For the investigation the well-suited materials systems GaAs and Fe3Si are used. Within the framework of this thesis the open question whether a magnetization in the nanowires that is perpendicular to the nanowire’s substrate can be realized is of special interest. Such a configuration of the magnetization is desirable, because some spintronic device concepts rely on magnetizations perpendicular to the substrate. In general, with the exception of very limited and highly specific materials, the shape anisotropy of thin magnetic layers causes the magnetic moments to orient along an in-plane direction and therefore, perpendicular configurations of the magnetization do not occur at equilibrium conditions. In contrast, magnetic nanowires with moments pointing along the wire axis directly provide the desired out-of plane magnetization. In the first part, the epitaxial procedure to realize the core-shell nanowires is described. Nanowires with smooth side walls, smooth interface to the GaAs core, a fairly high structural ordering and an epitaxial orientation relationship are produced. In the second part, the magnetic properties of the core-shell nanowires are analyzed. It is shown that characterizations of an ensemble of wires cannot resolve magnetic properties of the shells. Investigations on single nanowires however revealed that the magnetization in the shells is indeed as desired oriented along the wires. Several innovative device concepts based on the specific magnetic properties of these core-shell nanowires are finally introduced in the third part of this work. Within these concepts three-dimensional magnetic recording devices with unsurpassed data storage capacities and circular polarized light emitting diodes for tremendously fast spin information transfer for intrachip communication can be realized.

Page generated in 0.0456 seconds