Knowledge of geotechnical soil properties in the upper meter of the seabed is important for challenges such as scour around submerged structures, management of unexploded ordnances, and generally issues associated with active sediment transport and deposition. Portable free fall penetrometers have been previously used to provide initial information on sediment type, strength, and stratification, but challenges with the calibration of empirical parameters such as the cone factor and strain rate factor hampered the derivation of geotechnical design parameters such as undrained shear strength. This challenge applies particularly in areas of more rare seabed soil conditions such as very soft estuarine sediments.
This study aims to advance the analysis procedure of portable free fall penetrometers (PFFP) in soft subaquatic fine-grained soils with natural water contents greater than the liquid limit by estimating the undrained shear strength (su). The logarithmic and power law methods for strain rate correction were investigated at sites in the York River Estuary and yielded a match to vane shear results at a logarithmic multiplier of k=0.1-0.3 and a power law rate exponent of β=0.01-0.03, indicating minimal strain rate effects. Resulting representative cone factors based on sediment strength and profile groupings ranged from 7 to 12 for logarithmic, power law, and no strain correction, and were tested at sites in the Potomac River with similar sediment properties. The PFFP su compared well with mini-vane shear measurements with differences of less than ± 0.5 kPa. Additionally, the PFFP su showed inappreciable differences in strength with or without strain rate application. Therefore, these high water content soils that exhibit little strain rate effects within a soil behavior context, can be better understood through rheological studies.
Rheological studies were conducted, and the storage and loss modulus were observed to remain constant when the soil is tested over a range of frequencies. This indicates that the sediment strength is not affected by the rate of soil testing. The outcome of this study is the advanced the use of the PFFP by quantifying the strain rate effects and defining the applicable cone factors for use in estimating the undrained shear strength of soft estuarine marine soils. Furthermore, the understanding of soil behavior of these soils has been explored from rheological context. / Master of Science / Presence of unexploded munitions (UXO) in waterways and coastal environments poses a danger to the populace. UXOs located proud on the seabed can be moved by hydrodynamic forces such as waves and currents to habited areas. This has prompted the need to understand how UXOs interact with the seabed regarding erosion, burial, as well as sinking. Current methods used to detect munitions can lack accuracy from unknown seabed soil conditions. Portable free fall penetrometers (PFFP) are rapid and economical tools that are used to obtain soil information in the seabed. However, the interpretation of the penetrometer data needs to be advanced to get more accurate results of soil strength.
In this research, physical soil samples were retrieved and tested in the laboratory. The laboratory results were used to calibrate the PFFP to improve the estimation of soil strength from PFFP. The estuarine soil tested exhibited high water contents raising the question of whether to describe its behavior rather as soil or suspension. Further tests were carried out to study how this soil deforms and flows when a load is applied. The results from this research enable the measuring of strength of the seabed more accurately and improves the understanding of very soft estuarine soil behavior.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/107267 |
Date | 02 July 2020 |
Creators | Kiptoo, Dennis Kipngetich |
Contributors | Civil and Environmental Engineering, Stark, Nina, Massey, Grace M., Castellanos, Bernardo Antonio, Yerro Colom, Alba |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Thesis |
Format | ETD, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0021 seconds