Este trabalho contém um estudo sobre equações de ondas fracamente dissipativas definidas em domínios de fronteira móvel ∂2u/∂t2/ + η∂u/∂t - Δu + g(u) = f(x,t), (x,t) ∈ ^Dτ, onde ^Dτ = ∪t∈(τ,+ ∞) Ot X . Dizemos que domínio Dτ possui fronteira móvel se admitirmos que a fronteira Γt de de Ot varia em relação a t. Nossa contribuição é dividida em três etapas. 1 - Provamos que o problema munido da condição de fronteira de Dirichlet é bem posto no sentido de Hadamard (existência global, unicidade e dependência contínua dos dados) para soluções fortes e fracas. Nessa etapa utilizamos um método clássico que transforma o domínio dependente de t em um domínio fixo. Como consequência observamos que o sistema é essencialmente não autônomo. 2 - Buscamos uma teoria de sistemas dinâmicos não autônomos para estudar o operador solução do problema como um processo U(t; τ) : Xτ → Xτ, t≥ τ, definido em espaços de fase Xt = H01(Ot) × L2(Ot) que são dependentes do tempo t. 3 - No contexto da dinâmica de longo prazo encontramos hipóteses para garantir que o sistema dinâmico associado ao problema de ondas em domínios de fronteira móvel possui um atrator pullback. Basicamente admitimos que o domínio é crescente e \"time-like\". Salientamos que o nosso trabalho é o primeiro que estuda tais equações de ondas sob o ponto de vista de sistemas dinâmicos não-autônomos. Para equações parabólicas, resultados no mesmo contexto foram obtidos anteriormente por Kloeden, Marín-Rubio e Real [JDE 244 (2008) 2062-2090] e Kloeden, Real e Sun [JDE 246 (2009) 4702-4730]. Entretanto o nosso problema á hiperbólico e nã possui a regularidade das equações parabólicas. / In this work we study a weakly dissipative wave equation defined in domains with moving boundary ∂2u/∂t2/ + η∂u/∂t - Δu + g(u) = f(x,t), (x,t) ∈ Dτ, where D&tau> = ∪t∈(τ,+ ∞) Ot X . We says that a domain D&tau has moving boundary if the boundary &Gama;t of Ot varies with respect to t. Our contribution is threefold. 1 - We prove that the wave equation equipped with Dirichlet boundary condition is well-posed in the sense of Hadamard (global existence, uniqueness and continuous dependence with respect to data) for weak and strong solutions. This is done by using a classical argument that transforms the time dependent domain in a fixed domain. As a consequence we see that the problem is essentially non-autonomous. 2 -We find a theory of non-autonomous dynamical systems in order to study the solution operator as a process U(t; τ) : Xτ → Xsub>t, t≥τ, defined in time dependent phase spaces Xt = H01 (Ot) × L2.(Ot. 3 - In the context of long-time behavior of solutions we find suitable conditions to guarantee the existence of a pullback attractor. Roughly speaking, we assume the domain Q is expanding and time-like. We emphasize that our work is the first one that consider wave equations in noncylindrical domains as non-autonomous dynamical systems. With respect to parabolic equations, similar results were early obtained by Kloeden, Marín-Rubio and Real [JDE 244 (2008) 2062-2090] and Kloeden, Real and Sun [JDE 246 (2009) 4702-4730]. However our problem is hyperbolic and does not enjoy regularity properties as the parabolic ones.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-17032015-113226 |
Date | 09 June 2014 |
Creators | Chuño, Christian Manuel Surco |
Contributors | Fu, Ma To |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0022 seconds