Return to search

Application of hyperspectral imaging combined with chemometrics for the non-destructive evaluation of the quality of fruit in postharvest

Tesis por compendio / [ES] El objetivo de esta tesis doctoral es evaluar la técnica de imagen hiperespectral en el rango visible e infrarrojo cercano, en combinación con técnicas quimiométricas para la evaluación de la calidad de la fruta en poscosecha de manera eficaz y sostenible. Con este fin, se presentan diferentes estudios en los que se evalúa la calidad de algunas frutas que por su valor económico, estratégico o social, son de especial importancia en la Comunidad Valenciana como son el caqui 'Rojo Brillante', la granada 'Mollar de Elche', el níspero 'Algerie' o diferentes cultivares de nectarina.
En primer lugar se llevó a cabo la monitorización de la calidad poscosecha de nectarinas 'Big Top' y 'Magique' usando imagen hiperespectral en reflectancia y transmitancia. Al mismo tiempo se evaluó la transmitancia para la detección de huesos abiertos. Se llevó a cabo también un estudio para distinguir los cultivares 'Big Top' y "Diamond Ray", los cuales poseen un aspecto muy similar pero sabor diferente. En cuanto al caqui 'Rojo Brillante', la imagen hiperespectral fue estudiada por una parte para monitorear su madurez, y por otra parte para evaluar la astringencia de esta fruta, que debe ser completamente eliminada antes de su comercialización. Las propiedades físico-químicas de la granada 'Mollar de Elche' fueron evaluadas usando imagen de color e hiperespectral durante su madurez usando la información de la fruta intacta y de los arilos. Finalmente, esta técnica se usó para caracterizar e identificar los defectos internos y externos del níspero 'Algerie'.
En la predicción de los índices de calidad IQI y RPI usando imagen en reflectancia y transmitancia se obtuvieron valores de R2 alrededor de 0,90 y en la discriminación por firmeza, una precisión entorno al 95 % usando longitudes de onda seleccionadas. En cuanto a la detección de huesos abiertos, el uso de la imagen hiperespectral en transmitancia obtuvo un 93,5 % de clasificación correcta de frutas con hueso normal y 100 % con hueso abierto usando modelos PLS-DA y 7 longitudes de onda. Los resultados obtenidos en la clasificación de los cultivares 'Big Top' y 'Diamond Ray' mostraron una fiabilidad superior al 96,0 % mediante el uso de modelos PLS-DA y 14 longitudes de onda seleccionadas, superando a la imagen de color (56,9 %) y a un panel entrenado (54,5 %).
Con respecto al caqui, los resultados obtenidos indicaron que es posible distinguir entre tres estados de madurez con una precisión del 96,0 % usando modelos QDA y se predijo su firmeza obteniendo un valor de R2 de 0,80 usando PLS-R. En cuanto a la astringencia, se llevaron a cabo dos estudios similares en los que en el primero se discriminó la fruta de acuerdo al tiempo de tratamiento con altas concentraciones de CO2 con una precisión entorno al 95,0 % usando QDA. En el segundo se discriminó la fruta de acuerdo a un valor de contenido en taninos (0,04 %) y se determinó qué área de la fruta era mejor para realizar esta discriminación. Así se obtuvo una precisión del 86,9 % usando la zona media y 23 longitudes de onda.
Los resultados obtenidos para la granada indicaron que la imagen de color e hiperespectral poseen una precisión similar en la predicción de las propiedades fisicoquímicas usando PLS-R y la información de la fruta intacta. Sin embargo, cuando se usó la información de los arilos, la imagen hiperespectral fue más precisa. En cuanto a la discriminación del estado de madurez usando PLS-DA, la imagen hiperespectral ofreció mayor precisión, 95,0 %, usando la información de la fruta intacta y del 100 % usando la de los arilos.
Finalmente, los resultados obtenidos para el níspero indicaron que la imagen hiperespectral junto con el método de clasificación XGBOOST pudo discriminar entre muestras con y sin defectos con una precisión del 97,5 % y entre muestras sin defectos o con defectos internos o externos con una precisión del 96,7 %. Además fue posible distinguir entre los dife / [CA] L'objectiu de la present tesi doctoral se centra en avaluar la capacitat de la imatge hiperespectral en el rang visible i infraroig pròxim, en combinació amb mètodes quimiomètrics, per a l'avaluació de la qualitat de la fruita en post collita de manera eficaç i sostenible. A aquest efecte, es presenten diferents estudis en els quals s'avalua la qualitat d'algunes fruites que pel seu valor econòmic, estratègic o social, són d'especial importància a la Comunitat Valenciana com són el caqui 'Rojo Brillante', la magrana 'Mollar de Elche', el nispro 'Algerie' o diferents cultivares de nectarina.
En primer lloc es va dur a terme la monitorització de la qualitat post collita de nectarines 'Big Top' i 'Magique' per mitjà d'imatge hiperespectral en reflectància i trasnmitancia. Així mateix es va avaluar la transmitància per a la detecció d'ossos oberts. Es va dur a terme també un estudi per distingir els cultivares 'Big Top' i 'Diamond Ray', els quals posseeixen un aspecte molt semblant però sabor diferent. Pel que fa al caqui 'Rojo Brillante', la imatge hiperespectral va ser estudiada d'una banda per a monitoritzar la seua maduresa, i per un altre costat per avaluar l'astringència, que ha de ser completament eliminada abans de la seua comercialització. Les propietats fisicoquímiques de la magrana 'Mollar de Elche' van ser avaluades per la imatge de color i hiperespectral durant la seua maduresa usant la informació de la fruita intacta i els arils. Finalment, aquesta tècnica es va fer servir per caracteritzar i identificar els defectes interns i externs del nispro 'Algerie'.
En la predicció dels índexs de qualitat IQI i RPI usant imatge en reflectància com en trasnmitancia es van obtindre valors de R2 al voltant de 0,90 i en la discriminació per fermesa una precisió entorn del 95,0 % utilitzant longituds d'ona seleccionades. Pel que fa a la detecció d'ossos oberts, l'ús de la imatge hiperespectral en transmitància va obtindre un 93,5 % classificació correcta de fruites amb os normal i 100 % amb os obert usant models PLS-DA i 7 longituds d'ona. Els resultats obtinguts en la classificació dels cultivares 'Big Top' i 'Diamond Ray' van mostrar una fiabilitat superior al 96,0 % per mitjà de l'ús de models PLS-DA i 14 longituds d'ona, superant a la imatge de color (56,9 %) i a un panell sensorial entrenat (54,5 %).
Quant al caqui, els resultats obtinguts van indicar que és possible distingir entre tres estats de maduresa amb una precisió del 96,0 % usant models QDA i es va predir la seua fermesa obtenint un valor de R2 de 0,80 usant PLS-R. Pel que fa a l'astringència, es van dur a terme dos estudis similars en què el primer es va discriminar la fruita d'acord al temps de tractament amb altes concentracions de CO2 amb una precisió al voltant del 95,0 % usant QDA. En el segon, es va discriminar la fruita d'acord a un valor de contingut en tanins (0,04 %) i es va determinar quina part de la fruita era millor per a realitzar aquesta discriminació. Així es va obtindre una precisió del 86,9 % usant la zona mitjana i 23 longituds d'ona.
Els resultats obtinguts per la magrana van indicar que la imatge de color i hiperespectral posseïxen una precisió semblant a la predicció de les propietats fisicoquímiques usant PLS-R i la informació de la fruita intacta. No obstant això, quan es va usar la informació dels arils, la imatge hiperespectral va ser més precisa. Quant a la discriminació de l'estat de maduresa usant PLS-DA, la imatge hiperespectral va oferir major precisió (95,0 %) usant la informació de la fruita intacta i del 100 % usant la dels arils.
Finalment, els resultats obtinguts pel nispro indiquen que la imatge hiperespectral juntament amb el mètode de classificació XGBOOST va poder discriminar entre mostres amb i sense defectes amb una precisió del 97,5 % i entre mostres sense defectes o amb defectes interns o externs amb una precisió del 96,7 %. A més, va ser possible distingir entre / [EN] The objective of this doctoral thesis is to evaluate the potential of the hyperspectral imaging in the visible and near infrared range in combination with chemometrics for the assessment of the postharvest quality of fruit in a non-destructive, efficient and sustainable manner. To this end, different studies are presented in which the quality of some fruits is evaluated. Due to their economic, strategic or social value, the selected fruits are of special importance in the Valencian Community, such as Persimmon 'Rojo Brillante', the pomegranate 'Mollar de Elche', the loquat 'Algerie' or different nectarine cultivars.
First, the quality monitoring of 'Big Top' and 'Magique' nectarines was carried out using reflectance and transmittance images. At the same time, transmittance was evaluated for the detection of split pit. In addition, a classification was performed to distinguish the 'Big Top' and 'Diamond Ray' cultivars, which look very similar but have different flavour. Whereas that for the 'Rojo Brillante' persimmon, the hyperspectral imaging was studied on the one hand to monitor its maturity, and on the other hand to evaluate the astringency of this fruit, which must be completely eliminated before its commercialization. The physicochemical properties of the 'Mollar de Elche' pomegranate were evaluated by means of hyperspectral and colour imaging during its maturity using the information from the intact fruit and arils. Finally, this technique was used to characterise and identify the internal and external defects of the 'Algerie' loquat.
In the prediction of the IQI and RPI quality indexes using reflectance and transmittance images, R2 values around 0.90 were obtained and in the discrimination according to firmness, accuracy around 95.0 % using selected wavelengths was obtained. Regarding the split pit detection, the use of the hyperspectral image in transmittance mode obtained a 93.5 % of fruits with normal bone correctly classified and 100% with split pit using PLS-DA models and 7 wavelengths. The results obtained in the classification of 'Big Top' and 'Diamond Ray' fruits show accuracy higher than 96.0 % by using PLS-DA models and 14 selected wavelengths, higher than the obtained with colour image (56.9 %) and a trained panel (54.5 %).
According to persimmon, the results obtained indicated that it is possible to distinguish between three states of maturity with an accuracy of 96.0 % using QDA models and its firmness was predicted obtaining a R2 value of 0.80 using PLS-R. Regarding astringency, two similar studies were carried out. In the first study, the fruit was classified according to the time of treatment with high concentrations of CO2 with a precision of around 95.0 % using QDA. In the second, the fruit was discriminated according to a threshold value of soluble tannins (0.04 %) and was determined what fruit area was better to perform this discrimination. Thus, an accuracy of 86.9 % was obtained using the middle area and 23 wavelengths.
The results obtained for the pomegranate indicated that the use of colour and hyperspectral images have a similar precision in the prediction of physicochemical properties using PLS-R and the intact fruit information. However, when the information from the arils was used, the hyperspectral image was more accurate. Regarding the discrimination by the state of maturity using PLS-DA, the hyperspectral image offered greater precision, of 95.0 % using the information from the intact fruit and 100 % using that from the arils.
Finally, the results obtained for the 'Algerie' loquat indicated that the hyperspectral image with the XGBOOST classification method could discriminate between sound samples and samples with defects with accuracy of 97.5 % and between sound samples or samples with internal or external defects with an accuracy of 96.7 %. It was also possible to distinguish between the different defects with an accuracy of 95.9 %. / Munera Picazo, SM. (2019). Application of hyperspectral imaging combined with chemometrics for the non-destructive evaluation of the quality of fruit in postharvest [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/125954 / Compendio

Identiferoai:union.ndltd.org:upv.es/oai:riunet.upv.es:10251/125954
Date04 July 2021
CreatorsMunera Picazo, Sandra María
ContributorsAleixos Borrás, María Nuria, Blasco Ivars, José, Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament
PublisherUniversitat Politècnica de València
Source SetsUniversitat Politècnica de València
LanguageEnglish
Detected LanguageSpanish
Typeinfo:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/acceptedVersion
Coverageeast=-0.7532808999999361; north=39.4840108; name=Comunidad Valenciana, Espanya
Rightshttp://rightsstatements.org/vocab/InC/1.0/, info:eu-repo/semantics/openAccess

Page generated in 0.0039 seconds