Return to search

Inégalités géométriques et fonctionnelles / Geometric and Functional Inequalities

La majeure partie de cette thèse est consacrée à l'inégalité de Blaschke-Santaló, qui s'énonce ainsi : parmi les ensembles symétriques, la boule euclidienne maximise le produit vol(K) vol(K°), K° désignant le polaire de K. Il existe des versions fonctionnelles de cette inégalité, découvertes par plusieurs auteurs (Ball, Artstein, Klartag, Milman, Fradelizi, Meyer. . .), mais elles sont toutes dérivées de l'inégalité ensembliste. L'objet de cette thèse est de proposer des démonstrations directes de ces inégalités fonctionnelles. On obtient ainsi de nouvelles preuves de l'inégalité de Santaló, parfois très simples. La dernière partie est un peu à part et concerne le chaos gaussien : on démontre une majoration précise des moments du chaos gaussien due à Lataªa par des arguments de chaînage à la Talagrand / This thesis is mostly about the Blaschke-Santaló inequality, which states that among symmetric sets, the Euclidean ball maximises the product vol(K) vol(K°), where K° is the polar body of K. Several authors (Ball, Artstein, Klartag, Milman, Fradelizi, Meyer. . .) were able to derive functional inequalities from this inequality. The purpose of this thesis is to give direct proofs of these functional Santaló inequalities. This provides new proofs of Santaló, some of which are very simple. The last chapter is about Gaussian chaoses. We obtain a sharp bound for moments of Gaussian chaoses due to Lataªa, using the generic chaining of Talagrand

Identiferoai:union.ndltd.org:theses.fr/2008PEST0231
Date03 December 2008
CreatorsLehec, Joseph
ContributorsParis Est, Maurey, Bernard
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text, Text

Page generated in 0.0018 seconds