Return to search

Effet de travail du sol sur les stocks et flux de C et N dans un sol limoneux de grandes cultures du bassin Parisien

Pendant plusieurs siècles, le sol a été labouré pour contrôler le développement des mauvaises herbes, incorporer des résidus de culture et préparer le sol avant le semis. Après le développement des herbicides la nécessité de labourer a été posée et des systèmes de travail du sol réduit ont été introduits. Ces systèmes de travail du sol réduit ont deux caractéristiques : (i) le sol n'est plus labouré et, (ii) le sol est toujours complètement ou partiellement couvert avec des résidus de culture. Le passage du labour profond au semis-direct (un système de travail du sol réduit) induit des modifications dans la structure du sol et la localisation de la matière organique du sol (MOS) et des résidus de culture. Ceci entraîne des modifications dans le climat du sol (température et humidité) et certaines propriétés biologiques, chimiques et physiques du sol. La combinaison de toutes ces modifications a une influence importante sur les transformations de l'azote et du carbone dans le sol. Les objectifs de notre étude ont été de (i) quantifier les différences des stocks et de flux de carbone et de l'azote entre différents systèmes de travail du sol différenciés depuis 32 années dans un sol limoneux de grande culture du bassin Parisien et, (ii) expliciter les effets du climat du sol, de la structure et des propriétés biologiques et physiques du sol sur les différences de fonctionnement des cycles du carbone et de l'azote du sol. Cette étude a été essentiellement focalisée sur les variables qui ont un impact agronomique ou environnemental : carbone et azote organique du sol, dynamique de l'azote minéral du sol et les émissions de CO2 et N2O. Deux systèmes de travail du sol ont été étudiés : le labour (CT) et le semis-direct (NT). Ces systèmes de travail du sol ont été suivis sur des parcelles en rotation maïs-blé du site expérimental de Boigneville (91) en France. NT présente des stocks de carbone 5 à 15 % plus importants et des stocks d'azote 3 à 10% supérieurs à ceux mesurés pour CT, mais ces différences n'ont pas toujours été statistiquement significatives. Les concentrations de C et N diminuent avec la profondeur en NT alors qu'elles sont distribuées de façon homogène dans la couche labourée en CT. La différence de stock d'azote organique associé aux argiles et limons et la différence de stock d'azote associé à la matière organique particulaire (MOP) ont chacune expliqué 50 % de la différence de stock d'azote total entre les deux systèmes. 66 % de la différence du stock de carbone total du sol ont été explicités par la différence de stock de carbone présent dans la MOP (58 %) et les résidus de culture (8 %). Le carbone et l'azote additionnel dans NT se situe dans des agrégats. Nos résultats suggèrent que les stocks de C et N plus importants pour NT peuvent être attribués à (i) la formation de macroagrégats plus prononcée dans la couche 0-5 cm due à l'activité microbienne et aux stocks de MOS plus importants et, (ii) la meilleure protection de la MOS dans la couche 5-20 cm due à une porosité du sol plus faible et à l'absence de la destruction de la structure du sol par le travail du sol ou le climat. Les modalités de travail du sol n'ont pratiquement pas eu d'influence sur les dynamiques de l'eau et de nitrates dans le profil (0-120 cm) du sol. L'interprétation des données avec le modèle LIXIM a permis de calculer des vitesses de minéralisation comparables pour les 2 systèmes que celles-ci soient calculées avec une échelle de temps exprimée en jours calendaires ou en jours normalisés (à une température et une humidité du sol de référence). Ces résultats montrent que la fourniture d'azote minéral par le sol est similaire dans les différents systèmes de travail du sol étudiés à Boigneville. Par ailleurs, les émissions de N2O ont eu tendance à être plus élevées pour NT que pour CT. Les émissions de CO2 en absence de couvert végétal ont pu être plus importantes pour l'un ou l'autre des systèmes de travail du sol en fonction des conditions climatiques et de la localisation des résidus de culture. Le cumul des quantités de CO2 émis par NT a été significativement plus important que pour CT. Au cours d'une seconde partie du travail, nous avons cherché à montrer si les différences de stocks et de flux de C et N entre les différentes modalités de travail du sol étaient le résultat des modifications des conditions climatiques, de la localisation et des quantités de SOM et résidus de culture ou des propriétés biologiques ou physiques du sol. D'abord, nos résultats ont montré que la minéralisation potentielle du C et N en conditions contrôlées n'a pas été moins importante pour NT comparé à CT. Par ailleurs, la protection physique de la MOS contre la minéralisation du C et N a été évaluée par incubation d'échantillons de sol dont les structures entre 50 µm et 12.5 mm ont été progressivement détruites. Quatre zones structurales ont été considérées : zones avec une structure poreuse ou compacte pour CT et horizons 0-5 et 5-20 cm pour NT. Les résultats indiquent que la destruction de la structure de l'horizon 0-5 cm de NT induit une faible augmentation de la minéralisation de l'azote et pas d'augmentation pour la minéralisation du carbone. La protection de la MOS est en réalité la plus importante pour la couche 5-20 cm du NT. Ensuite, les différences de décomposition de la MOS entre CT et NT au champ ont été influencées par des différences de la température et de l'humidité du sol. Toutefois ces différences ont été souvent faibles et les conditions n'ont pas été systématiquement plus favorables pour la décomposition dans l'un ou l'autre des systèmes de travail du sol. Néanmoins, la distribution et la quantité de pluie et l'évaporation d'eau ont eu une influence importante sur la dynamique des flux de CO2. Les pluies induisent une réhumectation rapide des résidus de surface qui entraîne une augmentation importante des flux de CO2 pour NT par rapport à CT. Après les pluies, la teneur en eau des résidus de surface diminue rapidement ce qui limite sérieusement leur décomposition entraînant des émissions plus faibles pour NT comparé à CT. Finalement, les flux de C et N ont été simulés avec le modèle PASTIS. Les simulations ont montré que la quantité cumulée plus importante de CO2 émise par NT a résulté d'une décomposition plus importante des résidus de culture et pas d'une différence de décomposition des MOS. En réalité, la plus grande quantité des résidus de culture accumulée à la surface du sol dans NT fait plus que compenser la plus faible vitesse de décomposition des résidus en surface pour NT comparé avec la situation de résidus enfouis pour CT. En définitive, c'est la teneur en eau du mulch de résidus qui contrôle le plus l'amplitude de la différence de vitesse de décomposition des résidus entre CT et NT.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00011985
Date01 March 2006
CreatorsOorts, Katrien
PublisherInstitut national agronomique paris-grignon - INA P-G
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0026 seconds