Return to search

Strategies for Computational Investigation of Reaction Mechanisms in Organic and Polymer Chemistry Using Static Quantum Mechanics

This thesis presents computational studies of problems in the organic and polymer chemistry. The state-of-the art quantum chemical methods are used to gain further insight into the origin and the nature of the reactions in three different organic and polymer systems. The research questions are conceptually approached by identifying the key aspects. Then an appropriate strategy for the quantum chemical modeling is developed.
In the scope of the polymer chemistry, the novel synthesis technique of nanostructured materials, the so-called twin polymerization, is investigated. Using three model systems of increasing complexity the influence of the anion (trifluoroacetate) in the reaction system is investigated. The effect of the solvent polarity as well as the effect of the entropic contributions are also considered.
The rearrangement reaction of the volatile cyanotritylcarbenes is another topic. These carbenes readily rearrange to ethene main products, however also small amount of the unexpected heptafulvenes is formed. This unprecedented heptafulvene formation is modeled in detail and the energetics is systematically evaluated to identify most reasonable rearrangement pathways of the probable multiple alternative routes. Computational investigation of other tritylcarbenes with varying spectator substituents results in sophisticated data base for experimental investigations.
At last, some controversial observations in experimental studies concerning the kinetics of the electrophilic alkylation of the barbiturate anion are studied. To interpret the kinetic measurements, different alkylation pathways are analyzed with respect to their energetics. Further, the influence of microsolvation is demonstrated.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:ch1-qucosa-198756
Date03 March 2016
CreatorsTchernook, Ivan
ContributorsTechnische Universität Chemnitz, Fakultät für Naturwissenschaften, Jun.-Prof. Dr. Joachim Friedrich, Jun.-Prof. Dr. Joachim Friedrich, Prof. Dr. Werner A. Goedel
PublisherUniversitätsbibliothek Chemnitz
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis
Formatapplication/pdf, text/plain, application/zip

Page generated in 0.0023 seconds