Machine learning applications within medical imaging often suffer from a lack of data, as a consequence of restrictions that hinder the free distribution of patient information. In this project, GANs (generative adversarial networks) are used to generate data synthetically, in an effort to circumvent this issue. The GAN framework PGAN is trained on the brain tumor segmentation dataset BraTS to generate new, synthetic brain tumor masks with the same visual characteristics as the real samples. The image-to-image translation network SPADE is subsequently trained on the image pairs in the real dataset, to learn a transformation from segmentation masks to brain MR images, and is in turn used to map the artificial segmentation masks generated by PGAN to corresponding artificial MR images. The images generated by these networks form a new, synthetic dataset, which is used to augment the original dataset. Different quantities of real and synthetic data are then evaluated in three different brain tumor segmentation tasks, where the image segmentation network U-Net is trained on this data to segment (real) MR images into the classes in question. The final segmentation performance of each training instance is evaluated over test data from the real dataset with the Weighted Dice Loss metric. The results indicate a slight increase in performance across all segmentation tasks evaluated in this project, when including some quantity of synthetic images. However, the differences were largest when the experiments were restricted to using only 20 % of the real data, and less significant when the full dataset was made available. A majority of the generated segmentation masks appear visually convincing to an extent (although somewhat noisy with regards to the intra-tumoral classes), while a relatively large proportion appear heavily noisy and corrupted. However, the translation of segmentation masks to MR images via SPADE proved more reliable and consistent.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-169863 |
Date | January 2020 |
Creators | Foroozandeh, Mehdi |
Publisher | Linköpings universitet, Institutionen för medicinsk teknik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0023 seconds