Return to search

Generative Language Models for Automated Programming Feedback

In recent years, Generative Language Models have exploded into the mainstream with household names like BERT and ChatGPT, proving that text generation could have the potential to solve a variety of tasks. As the number of students enrolled into programming classes has increased significantly, providing adequate feedback for everyone has become a pressing logistical issue. In this work, we evaluate the ability of near state-of-the-art Generative Language Models to provide said feedback on an automated basis. Our results show that the latest publicly available model GPT-3.5 has a significant aptitude for finding errors in code while the older GPT-3 is noticeably more uneven in its analysis. It is our hope that future, potentially fine-tuned models could help fill the role of providing early feedback for beginners, thus significantly alleviating the pressure put upon instructors.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:su-219672
Date January 2023
CreatorsHedberg Segeholm, Lea, Gustafsson, Erik
PublisherStockholms universitet, Institutionen för data- och systemvetenskap
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0021 seconds