1 |
The Impact of AI-generated Code on Web Development: A Comparative Study of ChatGPT and GitHub CopilotFajkovic, Edvin, Rundberg, Erik January 2023 (has links)
Background. Machine learning and artificial intelligence are advancing faster than ever, code generation is becoming a hot topic and is starting to gain traction in the industry. This creates the question, is it possible to create a complete website from scratch using only code generated by AI? Objectives. To determine whether it is possible to create complete websites from start to finish with the code-generating tools. The tools in question are OpenAI’s ChatGPT and GitHub’s Copilot. Methods. A design-based research was conducted where two tools were evaluated for the task of recreating a wireframe as closely as possible in terms of efficiency, accuracy, maintainability, and ease of use. The code was then analyzedboth manually with a code review and using the tools SonarQube, ESLint, and Pylint. Results. The experiment resulted in that both tools delivered code that was similar in quality, both tools managed to create the websites according to wireframe with minor styling differences. We found that it is easier to create a website from scratch using OpenAI's ChatGPT than it is with GitHub's Copilot even though it uses OpenAI's Codex model which focuses on code generation. Conclusion. Code-generating AI is not advanced enough to create systems from scratch in a time-efficient way without introducing bugs and security risks.
|
2 |
A thesis that writes itself : On the threat of AI-generated essays within academiaOlsson, August, Engelbrektsson, Oscar January 2022 (has links)
Historically, cheating in universities has been limited to smuggling notes into exams, unauthorized cooperation, plagiarism and using ghost writers. New improvements in natural language processing now allow students to easily generate text, that is both unique and, in many ways, indistinguishable from what a human would create. These texts can then be submitted with little to no risk of getting caught by anti-cheating software. There are currently a multitude of such text generators online, which vary in ease of use, cost and capabilities. They are capable enough to generate unique text which will evade plagiarism-tools employed by universities. If you combine relatively cheap pricing, ease of use, pressure to perform well in school and low risk of detection. It is not too difficult to imagine that students will use tools like these to cheat. This thesis mainly focuses on whether humans can differentiate AI-generated essays from human written ones and what countermeasures can be used to hinder its use. By giving teachers at Halmstad University human and AI-generated text; then asking them to guess the source of text presented. The experiment concluded that teachers' ability to differentiate AI-generated text from human written text could not be proven. This thesis also surveys the currently available detection methods for AI-generated text and determines that they are not sufficient in their current form. Lastly, this thesis showcases alternative examination methods that could be used instead of essay-style examinations.
|
3 |
AI: A helping hand for digital marketing agencies? : AI: En hjälpande hand för digitala marknadsföringsbyråer?Ekman, Hampus, Strand, Erik January 2024 (has links)
This study evaluates whether generative AI tools built on the language model GPT-3 can streamline the processes of digital marketing agencies. The method used for gathering qualitative data was two sets of semi-structured individual interviews with different digital marketing agencies. The agencies were interviewed regarding frequent processes, AI usage, and attitudes toward the technology. Two ChatGPT experiments were conducted to get the interviewees’ insights on its use and the results. The data was categorized with the help of qualitative content analysis. Previous research and journals were additionally used to discuss the potential and consequences of AI, GPT in general, and GPT-3. Information about the different tools that use GPT-3 was collected through websites, articles, and blogs. The study’s data shows that tools using GPT-3 can streamline repetitive or time-consuming processes within ideation, content production, data analysis, personalized customer interactions, and increase productivity within digital marketing agencies. The tools’ tendencies to produce discriminating, faulty, generic, or uncreative information nevertheless create the need for constant human monitoring, source criticism, post-processing, and complementing with creative inputs. Researchers recommend the method of post-processing generative AI results. Digital marketing agencies have already begun implementing this method. Agencies’ attitudes toward the technology’s future within the industry are generally positive. The technology might, according to the interviewed agencies, become a threat to digital marketing professions in the future. This threat may occur if AI develops the creative ability to produce material that evokes emotions in the same way humans currently can. The agencies also believe that the technological change within the industry will come with new copyright laws, regulations, and pricing structures emphasizing creativity and competence.
|
4 |
Är AI din nya designpartner? : En explorativ studie av designers upplevelser av att samskapa med en generativ AI / Is AI your new design partner? : An exploratory study of designers' experiences of co-creating with a generative AINorlén, Linda, Selander, Henrik January 2021 (has links)
The development of Artificial Intelligence (AI) is advancing by the day and AI is now a major part of our daily lives. As it evolves, new applications are being introduced and created to make the user's everyday life easier. The aim of our study is to review the potential for generative AI to act as a tool to support co-creation for designers in creative, exploratory processes. The methodology of the study was a qualitative investigation in the form of an experiment and a subsequent interview with five participants, comparing the experience of traditional individual idea generation with idea generation supported by a generative AI. The results show a generally positive attitude towards AI as a co-creation tool, especially for independent idea generation and in freelancing. It was found that users can be reminded of details that are easily overlooked. We also found that inconsistency can be used as a tool,even though it deviates from the general guidelines for AI systems that exist today. / Utvecklingen av Artificiell Intelligens (AI) går framåt för varje dag som går och AI utgör idag en stor del av vår vardag. I takt med utvecklingen introduceras nya användningsområden som skapas för att underlätta användarens vardag. Syftet med vår undersökning är att se över möjligheterna för generativ AI att fungera som ett verktyg för att stödja samskapande för designers i kreativa, explorativa processer. Metoden för studien var en kvalitativ undersökning i form av ett experiment och en efterföljande intervju med fem deltagare, där upplevelsen av traditionell individuell idégnerering jämförs med idégenerering med stöd frånen generativ AI. Resultatet visar en generell, positiv inställning till AI som ett samskapande verktyg för självständig idégenerering. Det framkom bland annat att användare kan bli påminda om detaljer som lätt annars förbises, samt att inkonsekvens kan användas som ett verktyg trots att det frångår de generella riktlinjer för AI-system som finns idag.
|
5 |
Kan chatbotar lösa kodningsuppgifter bedömda av automatiska rättningsverktyg inom högre utbildningar? : En studie av ChatGPT / Can chatbots solve coding assignments assessed by automatic grading tools in higher education? : A case of ChatGPTDunder, Nora, Lundborg, Saga January 2023 (has links)
The present study examines ChatGPT-3's ability to generate code solutions for introductory programming courses in computer science and the potential implications for academic integrity. An experiment was conducted where ChatGPT was tested on programming problems from Kattis, an automatic software grading tool for computer programs, used in higher education. The results showed that ChatGPT independently could solve 19 out of 127 programming tasks assessed by Kattis. The study’s results also show that ChatGPT could generate accurate code solutions for simple problems on Kattis but encounters difficulties with more complex programming tasks. A qualitative follow up investigation was also carried out. To provide comments on methodology and discuss cheating in higher education concerning programming courses the two teachers were interviewed. The Kattis system is considered to have useful features for preventing cheating, such as hidden test cases, but it also has limitations in detecting AI-generated code. The report concludes by discussing the implications for various stakeholders, including teachers, students, and researchers. / Studien undersöker ChatGPT-3:s förmåga att generera kodlösningar för grundläggande programmeringskurser inom datavetenskap och de potentiella konsekvenserna för akademisk integritet. Ett experiment utfördes där ChatGPT testades med programmeringsproblem från Kattis, ett automatiskt rättningsverktyg för datorprogram som används inom högre utbildning. Resultaten visade att ChatGPT självständigt löste 19 av 127 programmeringsuppgifter som bedömdes av Kattis. Studien konstaterar att ChatGPT kan generera korrekta kodlösningar för problem med låg svårighetsgrad enligt Kattis, men stöter på svårigheter med mer komplexa programmeringsuppgifter. En kvalitativ uppföljningsundersökning genomfördes även där två lärare från KTH intervjuades för att ge sina kommentarer om metodvalet och diskutera fusket inom högre utbildning när det gäller programmeringskurser. Kattis-systemet anses ha användbara funktioner för att förhindra fusk, såsom dolda testfall, men har också begränsningar när det gäller att upptäcka AI-genererad kod. Rapporten avslutas med att diskutera implikationerna för olika intressenter, inklusive lärare, studenter och forskare.
|
6 |
Speech Classification using Acoustic embedding and Large Language Models Applied on Alzheimer’s Disease Prediction TaskKheirkhahzadeh, Maryam January 2023 (has links)
Alzheimer’s sjukdom är en neurodegenerativ sjukdom som leder till demens. Den kan börja tyst i de tidiga stadierna och fortsätta under åren till en allvarlig och obotlig fas. Språkstörningar uppstår ofta som ett av de tidiga symptomen och kan till slut leda till fullständig mutism i de avancerade stadierna av sjukdomen. Därför är tal- och språkbaserad analys en lovande och icke-invasiv metod för att upptäcka Alzheimer’s sjukdom i dess tidiga stadier. Vårt mål är att använda maskininlärning för att jämföra informationmängden hos språkliga representationer i stora språkmodeller och förtränade akustiska representationer. Såvitt vi vet är detta första gången som GPT-3 och wav2vec2.0 har använts tillsammans för klassificering av Alzheimer’s sjukdom. Dessutom utnyttjade vi för första gången en kombination av två stora språkmodeller, GPT-3 och BERT, för denna specifika uppgift. Genom att utvärdera vår metod på två datamängder på engelska och svenska kan vi också belysa språkskillnaderna mellan dessa två språk. / Alzheimer’s disease is a neurodegenerative disease that leads to dementia. It can begin silently in the early stages and progresses over the years to a severe and incurable stage. Language impairment often emerges as one of the early symptoms and can eventually progress to complete mutism in advanced stages of the disease. As a result, speech processing is a promising and non-invasive approach for detecting Alzheimer’s disease in its early stages. Our objective is to compare the informativeness levels of linguistic embedding derived from large language models and pre-trained acoustic embedding extracted using wav2vec2.0, in a machine learning-based approach. To the best of our knowledge, this is the first time that fusing GPT-3 text embedding and wav2vec2.0 acoustic embedding has been explored for Alzheimer’s disease classification. In addition, we utilized a combination of two large language models, GPT-3 and BERT, for the first time on this specific task. By evaluating our method on two datasets in English and Swedish, we can also highlight the language differences between these two languages.
|
7 |
Towards Automatic Generation of Personality-Adapted Speech and Emotions for a Conversational Companion Robot / Mot Automatisk Generering av Personlighets Anpassade Tal och Känslor för en Samtalskunnig Sällskaps RobotGalatolo, Alessio January 2022 (has links)
Previous works in Human-Robot Interaction have demonstrated the positive potential benefit of designing highly anthropomorphic robots. This includes physical appearance but also whether they can express emotions, behave in a congruent manner, etc. This work wants to explore the creation of a robot that is able to express a given personality consistently throughout a dialogue while also manifesting congruent emotional expressions. Personality defines many aspects of the character of a person and it can influence how one speaks, behaves, reacts to events, etc. Here, we only focus our attention on language and on how it changes depending on one particular personality trait, the extraversion. To this end, we tested different language models to automate the process of generating language according to a particular personality. We also compared large language models such as GPT-3 to smaller ones, to analyse how size can correlate to performance in this task. We initially evaluated these methods through a fairly small user study in order to confirm the correct manipulation of personality in a text-only context. Results suggest that personality manipulation and how well it is understood highly depend on the context of a dialogue, with a more ‘personal’ dialogue being more successful in manifesting personality. Also, the performance of GPT-3 is comparable to smaller models, specifically trained, with the main difference only given in the perceived fluency of the generations. We then conducted a follow-up study where we chose to use a robot that is capable of showing different facial expressions used to manifest different emotions, the Furhat robot. We integrated into the robot the generations from our language models together with an emotion classification method that is used to guide its facial expressions. Whilst the output of our models did trigger different emotional expressions, resulting in robots which differed both in their language and nonverbal behaviour, resultant perception of these robots’ personality only approached significance (p ∼ 0.08). In this study, GPT3 performed very similarly to much smaller models, with the difference in fluency also being much smaller than before. We did not see any particular change in the perception of the robots in terms of likeability nor uncanniness. / Tidigare arbeten inom Människa-robotinteraktion har visat den positiva potentiella fördelen med att designa mycket antropomorfa robotar. Detta inkluderar fysiskt utseende men också huruvida de kan uttrycka känslor, bete sig på ett kongruent sätt, etc. Detta arbete vill utforska skapandet av en robot som kan uttrycka en given personlighet konsekvent under en dialog samtidigt som den manifesterar kongruenta känslomässiga uttryck. Personlighet definierar många aspekter av en persons karaktär och den kan påverka hur man talar, beter sig, reagerar på händelser etc. Här fokuserar vi vår uppmärksamhet endast på språket och på hur det förändras beroende på ett särskilt personlighetsdrag, extraversion. För detta ändamål testade vi olika språkmodeller för att automatisera processen att skapa språk enligt en viss personlighet. Vi jämförde även stora språkmodeller som GPT-3 med mindre, för att analysera hur storlek kan relatera till prestanda i denna uppgift. Vi utvärderade inledningsvis dessa metoder genom en mindre användarstudie för att bekräfta att personligheten kan manipuleras på rätt sätt i en textbaserad kontext. Resultaten tyder på att personlighetsmanipulation och hur väl den förstås i hög grad beror på sammanhanget i en dialog, där en mer ‘personlig’ dialog är mer framgångsrik när det gäller att manifestera personlighet. Prestandan hos GPT-3 är också jämförbar med mindre modeller, specifikt tränade på en uppgift, där den största skillnaden var i den genererade textens upplevda flyt. Vi gjorde sedan en uppföljningsstudie där vi valde att använda en robot som är kapabel att visa olika ansiktsuttryck och därigenom kapabel att manifestera olika känslor, Furhat-roboten. Vi integrerade talet som genererades från våra språkmodeller i roboten tillsammans med en känsloklassificeringsmetod som används för att styra dess ansiktsuttryck. Medan resultatet av våra modeller framkallade olika känslomässiga uttryck, vilket resulterade i robotar som skilde sig åt både i språk och icke-verbal kommunikation, närmade sig endast den resulterande uppfattningen av dessa robotars personlighet signifikans (p ∼ 0.08). I denna studie presterade GPT-3 mycket likartat med mycket mindre modeller, med skillnaden i flyt också mycket mindre än tidigare. Vi såg ingen speciell förändring i uppfattningen av robotarna när det gäller sympati eller obehaglighet.
|
8 |
Context-aware Swedish Lexical Simplification : Using pre-trained language models to propose contextually fitting synonyms / Kontextmedveten lexikal förenkling på svenska : Användningen av förtränade språkmodeller för att föreslå kontextuellt passande synonymer.Graichen, Emil January 2023 (has links)
This thesis presents the development and evaluation of context-aware Lexical Simplification (LS) systems for the Swedish language. In total three versions of LS models, LäsBERT, LäsBERT-baseline, and LäsGPT, were created and evaluated on a newly constructed Swedish LS evaluation dataset. The LS systems demonstrated promising potential in aiding audiences with reading difficulties by providing context-aware word replacements. While there were areas for improvement, particularly in complex word identification, the systems showed agreement with human annotators on word replacements. The effects of fine-tuning a BERT model for substitution generation on easy-to-read texts were explored, indicating no significant difference in the number of replacements between fine-tuned and non-fine-tuned versions. Both versions performed similarly in terms of synonymous and simplifying replacements, although the fine-tuned version exhibited slightly reduced performance compared to the baseline model. An important contribution of this thesis is the creation of an evaluation dataset for Lexical Simplification in Swedish. The dataset was automatically collected and manually annotated. Evaluators assessed the quality, coverage, and complexity of the dataset. Results showed that the dataset had high quality and a perceived good coverage. Although the complexity of the complex words was perceived to be low, the dataset provides a valuable resource for evaluating LS systems and advancing research in Swedish Lexical Simplification. Finally, a more transparent and reader-empowering approach to Lexical Simplification isproposed. This new approach embraces the challenges with contextual synonymy and reduces the number of failure points in the conventional LS pipeline, increasing the chancesof developing a fully meaning-preserving LS system. Links to different parts of the project can be found here: The Lexical Simplification dataset: https://github.com/emilgraichen/SwedishLSdataset The lexical simplification algorithm: https://github.com/emilgraichen/SwedishLexicalSimplifier
|
9 |
Automatisk Summering av Cybersäkerhetsdiskussioner på Onlineforum : En prototyp för abstraktiv textsummering med en Zero-shot modellUnunger, Andreas January 2022 (has links)
Antalet cyberattacker ökar ständigt och därav också antalet angreppssätt och försvarstekniker. Detta innebär att personer verksamma inom cybersäkerhet behöver spendera mer och mer tid på att hålla sig uppdaterade om de senaste utvecklingarna i branschen. Det är därför av intresse att hitta sätt som kan påskynda denna inhämtning av information. I denna studie utvecklas en prototyp med målet att på ett nytt sätt automatiskt summera en av de många sorters nyhetskällor som finns inom cybersäkerhetsdiskussioner på onlineforum. Prototypen använder sig av abstraktiv textsummering med zero-shot modellen GPT-3. Prototypen som utvecklades utvärderades genom att mäta de summeringar som skapades med SUPERT. Resultatet från mätningen gav ett värde av 0,269 vid mätning mot de originella texterna och 0,358 vid mätning mot ett dataset som städats från text som inte rör cybersäkerhet. Från dessa värdet dras slutsatsen att utvecklingen av prototypen lyckades.
|
10 |
The impact of Large Language Models on the publishing sectors : Books, academic journals, newspapersKulesz, Octavio January 2023 (has links)
This paper examines the potential impact of Large Language Models (LLMs) in the press and in the production of books and academic journals. LLMs, such as OpenAI’s GPT-3, are trained on massive text corpora and can predict the next word in a given context through probabilistic methods. They have demonstrated autonomy and versatility in a variety of tasks, including question answering, translation, summarization, text classification, and code generation from natural language instructions. The paper discusses the trends, opportunities, and challenges of artificial intelligence (AI) and LLMs in the publishing industries, as well as the existing research on these topics. It also conducts experiments and operations with GPT-3 to explore its potential benefits and limitations, and offers reflections on the medium- and long-term impact of LLMs in those sectors.
|
Page generated in 0.0402 seconds