Return to search

An Engineering Geological Investigation of the Seismic Subsoil Classes in the Central Wellington Commercial Area.

The city of Wellington has a high population concentration and lies within a geologically active landscape at the southern end of the North Island, New Zealand. Wellington has a high seismic risk due to its close proximity to several major fault systems, with the active Wellington Fault located in the north-western central city. Varying soil depth and properties in combination with the close proximity of active faults mean that in a large earthquake rupture event, ground shaking amplification is expected to occur in Thorndon, Te Aro and around the waterfront.

This thesis focuses on the area bounded by Thorndon Overbridge in the north, Wellington Hospital in the south, Kelburn in the west, and Oriental Bay in the east. It includes many of the major buildings and infrastructural elements located within the central Wellington commercial area. The main objectives were to create an electronic database which allows for convenient access to all available data within the study area, to create a 3D geological model based upon this data, and to define areas of different seismic subsoil class and depth to rock within the study area at a scale that is useful for preliminary geotechnical analysis (1:5,000.

Borelogs from 1025 holes with accompanying geological and geotechnical data obtained from GNS Science and Tonkin & Taylor were compiled into a database, together with the results from SPAC microtremor testing at 12 sites undertaken specifically for this study. This thesis discusses relevant background work and defines the local Wellington geology.

A 3D geological model of the central Wellington commercial area, along with ten ArcGIS maps including surficial, depth to bedrock, site period, Vs30, ground shaking amplification hazard and site class (NZS 1170.5:2004) maps were created. These outputs show that a significant ground shaking amplification risk is posed on the city, with the waterfront, Te Aro and Thorndon areas most at risk.

Identiferoai:union.ndltd.org:canterbury.ac.nz/oai:ir.canterbury.ac.nz:10092/4287
Date January 2010
CreatorsSemmens, Stephen Bradley
PublisherUniversity of Canterbury. Geological Sciences
Source SetsUniversity of Canterbury
LanguageEnglish
Detected LanguageEnglish
TypeElectronic thesis or dissertation, Text
RightsCopyright Stephen Bradley Semmens, http://library.canterbury.ac.nz/thesis/etheses_copyright.shtml
RelationAppendices, Tables & Figures, and References are available on CD through Inter-Library Loan., NZCU

Page generated in 0.0027 seconds