Return to search

Structure-Function Relationships of Pi Class Glutathione Transferase Studied by Protein Engineering

<p>The glutathione transferases (GSTs) represent a superfamily of dimeric proteins involved in cellular detoxication by catalyzing the nucleophilic addition of the reduced glutathione (GSH) to the hydrophobic electrophiles. The present work focuses on the functional role of the conserved structures of GSTP1-1. The lock-and-key motif is a highly conserved hydrophobic interaction in the subunit interface of Pi, Mu, and Alpha class GSTs. The key residue (Tyr<sup>50</sup> in hGSTP1-1) of one subunit is wedged into a hydrophobic pocket of the neighboring subunit. The heterodimer GSTP1/Y50A was constructed from the fully active wild-type GSTP1-1 and the nearly inactive Y50A in order to study how an essentially inactive subunit influences the activity of the neighboring subunit. The results illuminate the vital role of the lock-and-key motif in modulating the GSH binding and the rate of catalysis. Additionally, the two active sites of the dimeric enzyme work synergistically. An observed water network, in hGSTP1-1 structures, connects the two active sites, thereby offering a mechanism for communication between the two active sites.</p><p>Cys<sup>48</sup> and Tyr<sup>50</sup> were targeted by mutations and chemical modifications for understanding how the α2 loop residues modulate GSH binding and catalysis. The replacement of Tyr<sup>50</sup> with different unnatural amino acids showed that the nature of the key residue side-chain influences the interaction with the lock structure and, consequently, the catalytic activity. The K<sub>M</sub><sup>GSH</sup>, GSH affinity and protein stability can be modulated by fitting key residue into the lock cavity of the neighbor subunit and, consequently, restriction of the flexibility of the α2 loop. Optimization of the interaction between the key residue and the lock-cavity increases k<sub>cat</sub>. Also, the crystal structure of the Cys-free variant was determined. The result indicated that Cys<sup>48</sup> restricts the flexibility of the α2 loop by interacting with surrounding residues and, consequently, contributes to GSH binding and protein stability.</p>

Identiferoai:union.ndltd.org:UPSALLA/oai:DiVA.org:uu-7146
Date January 2006
CreatorsHegazy, Usama M.
PublisherUppsala University, Department of Biochemistry, Uppsala : Acta Universitatis Upsaliensis
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, text
RelationDigital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, 1651-6214 ; 222

Page generated in 0.0029 seconds