Les milieux réactionnels issus de l’étude de la réactivité de deux types de polyols, le glycérol et le diglycérol par réaction d’estérification directe avec l’acide undécylénique, catalysée par l’acide dodécylbenzène sulfonique (ADBS). Les résultats montrent que les ystèmes polyol/acide undécylénique donnent une émulsion eau dans huile (E/H). L’ajout de l’ADBS et de l’eau formée in-situ aux systèmes polyol/acide undécylénique ont permis de réduire la taille des gouttelettes de 50 μm à moins de 1 μm et d’obtenir un système organisé (micro-réacteur). L’augmentation de la température contribue à favoriser le transfert de matière dans les systèmes émulsionnés et / ou gélifiés et d’obtenir un système monophasique, homogène et structurés. L’étude de la réaction de ces systèmes avec une approche site à site (site OH / site COOH) a montré que lorsque le nombre de sites acides carboxyliques est inférieur à celui des sites hydroxyles, la synthèse est totalement sélective en esters partiels des deux polyols (glycérol et diglycérol). Les rendements sont supérieurs respectivement à 60% en esters partiels de glycérol et à 70% en esters partiels de diglycérol. La modélisation de la cinétique de synthèses et la régression des données cinétiques ont montré que la réaction est réversible d’ordre 2 et athermique. Les énergies d’activation calculées sont de 17 kcal/mol et 16 kcal/mol respectivement pour le monoundécénoate de glycérol (MUG) et le diundécénoate de glycérol (DUG). De plus, la méthodologie de recherche expérimentale a montrée que les variables (concentration en catalyseur ADBS et température) permettent d’obtenir le MUG avec un rendement de plus de 60% et une sélectivité en MUG de 80%. Ensuite, l’étude de la réactivité de la double liaison terminale du MUG en présence de deux agents oxydants pour engendrer des molécules bolaamphiphiles simples a été réalisée par H2O2 / acide formique et acide métachloroperbenzoïque (m-CPBA). Les résultats ont montré le 10,11-dihydroxy-monoundécénoate de glycérol (MUGDiol) est obtenu par oxydation au H2O2 / acide formique et le 10,11-époxy-monoundécénoate de glycérol (MUGE) par réaction d’époxydation avec la m-CPBA. L’ouverture de la fonction époxyde par des molécules aminées permet l’observation de nouvelles molécules bolaamphiphiles : le 10-hydroxy-N-11-((2-hydroxyéthyl)amino)monoundécénoate de glycérol(bola éthanolamineglycérol) et le N,N-11-(diaminobutan)-10-hydroxymonoundecanoate de glycérol (bola diaminobutaneglycérol). L’étude des propriétés physico-chimiques de ces molécules amphiphiles et bolaamphiphiles a permis de monter que toutes ces molécules sont de solvo-surfactants actifs aux interfaces et elles réduisent la tension interfaciale de l’eau jusqu’à la limite de la solubilité dans l’eau. L’adsorption des molécules ne vérifie pas le modèle de Gibbs. Le MUG et le MUDG s’auto-assemblent dans l’eau et donnent des nano-objets (vésicules et agrégats plats) et s’adsorbent sur des surfaces polaires et solides (silice et ciment). Ces deux molécules retiennent 30% et 56% molécules d’eau et le nombre de molécules d’eau fortement liée aux têtes polaires est de 21 et 49 respectivement pour le MUG et le MUDG. Pour es molécules bolaamphiphiles pures (MUGE et bola éthanolamineglycérol), elles retiennent plus de 56% de molécules d’eau et se lient à plus 53 molécules d’eau. L’ensemble de ces propriétés physico-chimiques a permis de répondre aux problématiques industrielles et de formuler un produit de cure, un agent de démoulage et un produit anti-adhérent. / This study is of the reactivity of two types of polyols (glycerol and diglycerol) by direct esterification reaction with undecylenic acid from castor oil. This reaction was catalyzed by dodecylbenzene sulfonic acid (DBSA). The first step was to study of polyol / undecylenic acid reaction systems by physico-chemical approach. The result have shown that these systems give water-in-oil (W / O) emulsion. Adding DBSA and water formed in-situ in polyol/undecylenic acid systems have reduced droplet size from 50 microns to less than 1 μm and form an organized system (micro-reactor). Increasing temperature can simplify transfers in emulsified systems and / or melted gel and to get a monophasic and homogeneous system. The only systems and aided by water formed in-situ assists the organization and structuring of gels. The reaction study of these systems was analyzed by gas chromatography. This showed that when the number of carboxylic acid function sites is less than the hydroxyl function site, synthesis is totally selective to partial esters of the two polyols (glycerol and diglycerol). The yields are higher than 60% in partial glycerol esters and 70% in partial diglycerol esters. The kinetic modeling of this synthesis and regression of kinetic data by the software GEPASI showed that the reaction follows the reversible 2 order and it is athermic. The calculated activation energy is 17 kcal/mol for the synthesis of glycerol monoundecenoate (GMU) and 16 kcal/mol for glycerol diundecenoate (GDU), these values are close to the theoretical values and they show that the reaction is happening at room temperature. Moreover, the response of the surface methodology shows that the variables chosen for the present study are temperature and catalyst concentration have a positive effect on the yield of the GMU. This approach was used to determine the optimum conditions for producing the GMU. Second study performed was of the reactivity of the terminal double bond of the GMU in presence of two oxidizing agents H 2 O 2 / formic acid and metachloroperbenzoic acid (m-CPBA), for synthesized bolaamphiphiles molecules was performed. The H 2 O 2 /formic acid was used to oxidize the double bond of GMU in diol function of glycerol 10,11-dihydroxymonoundecenoate (GMUDiol). The m-CPBA epoxidizes the double bond of GMU to give glycerol 10,11-epoxymonoundécénoate (GMUE). The opening of the epoxide function by aminoalcohol molecules are used to generate the new molecules bolaamphiphiles molecules: the bola ethanolamineglycerol and the bola diaminobutaneglycerol. The third step was the stady of the physico-chemical properties of pure amphiphilic and bolaamphiphiles molecules. The result was shown that all molecules are solvo-surfactants molecules and they are active in the interfaces (liquid/air and liquid/solid). The curves of surface tension of water do not respect the Gibbs rule. GMU and DGMU self- assemble in water and give nano-objects (vesicles and aggregates) in diluted solutions. In hydrogel, the molecules self-assemble in lamellar phase. In this lamellar phase, the amount of water retained is 56% and the number of water molecules strongly linked to the polar heads is 49 moles of water/diglycerol monoundecenoate molecule (DGMU). All these physico-chemical properties have permit to respond to industrial problems such as water retention for the curing product, self-assembly for demoulding concrete and for surface anti-adhesion and adsorption and finally foaming required for the aged bitumen regeneration. For pure bolaamphiphiles molecules (GEMU and ethanolamineglycerol bola) reduce the interfacial tension of water to the limit of the solubility of this bola molecules in water but do not provide a critical aggregation concentration (CAC). They retain more water molecules respectively between 56% and 63% water and the number of water molecules strongly bound with two polar heads groups pure bolaamphiphiles molecules is between 42 and 53.
Identifer | oai:union.ndltd.org:theses.fr/2015INPT0046 |
Date | 30 April 2015 |
Creators | Nyame Mendendy Boussambe, Gildas |
Contributors | Toulouse, INPT, Mouloungui, Zéphirin, Valentin, Romain |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0037 seconds