Knotenfärbungen mit Abstandsbedingungen sind graphentheoretische Konzepte, motiviert durch das praktische Problem der Frequenzzuweisung in Mobilfunknetzen. In der Arbeit werden verschiedene Varianten solcher Färbungen vorgestellt. Für (Listen-)Färbungen mit einer beliebigen Anzahl r von Abstandsbedingungen werden allgemeine Eigenschaften und Schranken für die benötigte Anzahl von Farben bewiesen. Anschließend wird der Spezialfall r=2 behandelt. Färbungen mit zwei Abstandsbedingungen - die sogenannten L(d,s)-Labellings - werden für eine Reihe von Graphenklassen untersucht, u.a. für reguläre Parkettierungen, Weg- und Kreispotenzen und Graphen mit Durchmesser 2. Die Listenversion dieser Färbungen - die sogenannten L(d,s)-List Labellings - werden für Wege, Sterne, Kreise und Kakteen betrachtet. Ferner werden Untersuchungen zum Zusammenhang von L(2,1)-Labellings und L(2,1)-List Labellings bei speziellen Bäumen durchgeführt.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:105-5454783 |
Date | 16 December 2009 |
Creators | Kohl, Anja |
Contributors | TU Bergakademie Freiberg, Mathematik und Informatik, Prof. Dr. Ingo Schiermeyer, Prof. Dr. Ingo Schiermeyer, Prof. Dr. Margit Voigt, Prof. Dr. Arnfried Kemnitz |
Publisher | Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola" |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | deu |
Detected Language | German |
Type | doc-type:doctoralThesis |
Format | application/pdf |
Page generated in 0.0016 seconds