L'objet de ce travail est l'étude générale des représentations linéaires dugroupe de tresses $B_n$ qui proviennent de l'intégration de systèmes de Knizhnik-Zamolodchikov (KZ), vus comme représentations de l'algèbre des tressesinfinitésimales. Nous utilisons la technique des bases de Gelfand-Tsetlin pour étudier certaines représentations de cette algèbre, et montrons comment construire explicitement les représentations du groupe d'Artin correspondantes. Nous classifions complètement les systèmes KZ qui sont irréductibles pour l'action du groupesymétrique et construisons les nouvelles représentations de $B_n$ qui apparaissent àcette occasion. Nous obtenons d'autre part des critères d'irréductibilité sur les représentations de $B_n$ obtenues par construction tensorielle. Nous obtenons enfin d'autres résultats utiles dans ce cadre, notamment une décomposition partielle de l'algèbre de Lie engendrée par les transpositions dansl'algèbre de groupe du groupe symétrique. Cette décomposition partielle est en rapport avec les composantes irréductibles de la représentation de Jones.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00005386 |
Date | 30 March 2001 |
Creators | MARIN, Ivan |
Publisher | Université Paris Sud - Paris XI |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0019 seconds