Att använda maskininlärning för att detektera vapen eliminerar en konstant mänsklig övervakning, vilket också kan leda till en lägre responstid till polis. I den här rapporten undersöks hur en vapendetektor kan konstrueras och byggas som en del av en klient-server-lösning. / With the progress of deep learning methods the last couple of years, object detectionrelated tasks are improving rapidly. Using object detection for detecting guns in schoolsremove the need for human supervision and hopefully reduces police response time. Thispaper investigates how a gun detection system can be built by reading frames locally andusing a server for detection. The detector is based on a pre-trained SSD model and throughtransfer learning is taught to recognize guns. The detector obtained an Average Precisionof 51.1% and the server response time for a frame of size 1920 x 1080 was 480 ms, but couldbe scaled down to 240 x 135 to reach 210 ms, without affecting the accuracy. A non-gunclass was implemented to reduce the number of false positives and on a set of 300 imagescontaining 165 guns, the number of false positives dropped from 21 to 11.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-165371 |
Date | January 2019 |
Creators | Olsson, Johan |
Publisher | Linköpings universitet, Medie- och Informationsteknik, Linköpings universitet, Tekniska högskolan |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0023 seconds