Return to search

Métodos de Monte Carlo Hamiltoniano aplicados em modelos GARCH / Hamiltonian Monte Carlo methods in GARCH models

Uma das informações mais importantes no mercado financeiro é a variabilidade de um ativo. Diversos modelos foram propostos na literatura com o intuito de avaliar este fenômeno. Dentre eles podemos destacar os modelos GARCH. Este trabalho propõe o uso do método Monte Carlo Hamiltoniano (HMC) para a estimação dos parâmetros do modelo GARCH univariado e multivariado. Estudos de simulação são realizados e as estimativas comparadas com o método de estimação Metropolis-Hastings presente no pacote BayesDccGarch. Além disso, compara-se os resultados do método HMC com a metodologia adotada no pacote rstan. Por fim, é realizado uma aplicação a dados reais utilizando o DCC-GARCH bivariado e os métodos de estimação HMC e Metropolis-Hastings. / One of the most important informations in financial market is variability of an asset. Several models have been proposed in literature with a view of to evaluate this phenomenon. Among them we have the GARCH models. This paper use Hamiltonian Monte Carlo (HMC) methods for estimation of parameters univariate and multivariate GARCH models. Simulation studies are performed and the estimatives compared with Metropolis-Hastings methods of the BayesDcc- Garch package. Also, we compared the results of HMC method with the methodology present in rstan package. Finally, a application with real data is performed using bivariate DCC-GARCH and the methods of estimation HMC and Metropolis-Hastings.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-09102019-145123
Date26 April 2019
CreatorsXavier, Cleber Martins
ContributorsAndrade Filho, Marinho Gomes de, Ehlers, Ricardo Sandes
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguagePortuguese
TypeTese de Doutorado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0031 seconds