• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Métodos de Monte Carlo Hamiltoniano aplicados em modelos GARCH / Hamiltonian Monte Carlo methods in GARCH models

Xavier, Cleber Martins 26 April 2019 (has links)
Uma das informações mais importantes no mercado financeiro é a variabilidade de um ativo. Diversos modelos foram propostos na literatura com o intuito de avaliar este fenômeno. Dentre eles podemos destacar os modelos GARCH. Este trabalho propõe o uso do método Monte Carlo Hamiltoniano (HMC) para a estimação dos parâmetros do modelo GARCH univariado e multivariado. Estudos de simulação são realizados e as estimativas comparadas com o método de estimação Metropolis-Hastings presente no pacote BayesDccGarch. Além disso, compara-se os resultados do método HMC com a metodologia adotada no pacote rstan. Por fim, é realizado uma aplicação a dados reais utilizando o DCC-GARCH bivariado e os métodos de estimação HMC e Metropolis-Hastings. / One of the most important informations in financial market is variability of an asset. Several models have been proposed in literature with a view of to evaluate this phenomenon. Among them we have the GARCH models. This paper use Hamiltonian Monte Carlo (HMC) methods for estimation of parameters univariate and multivariate GARCH models. Simulation studies are performed and the estimatives compared with Metropolis-Hastings methods of the BayesDcc- Garch package. Also, we compared the results of HMC method with the methodology present in rstan package. Finally, a application with real data is performed using bivariate DCC-GARCH and the methods of estimation HMC and Metropolis-Hastings.
2

Abordagem bayesiana para polinômios fracionários

Carvalho, Dennison Célio de Oliveira January 2019 (has links)
Orientador: Miriam Harumi Tsunemi / Resumo: Em inúmeras situações práticas a relação entre uma variável resposta e uma ou mais covariáveis é curvada. Dentre as diversas formas de representar esta curvatura, Royston e Altman (1994) propuseram uma extensa famı́lia de funções denominada de Polinômios Fracionários (Fractional Polynomials - FP ). Bové e Held (2011) im- plementaram o paradigma bayesiano para FP sob a suposição de normalidade dos erros. Sua metodologia é fundamentada em uma distribuição a priori hiper − g (Liang et al., 2008), que, além de muitas propriedades assintóticas interessantes, garante uma predição bayesiana de modelos consistente. Nesta tese, compara-se as abordagens clássica e Bayesiana para PF a partir de dados reais disponı́veis na litera- tura, bem como por simulações. Além disso, propõem-se uma abordagem Bayesiana para modelos FPs em que a potência, diferentemente dos métodos usuais, pode as- sumir qualquer valor num determinado intervalo real e é estimada via métodos de simulação HMC (Monte Carlo Hamiltoniano) e MCMC (Métodos de Monte Carlo via Cadeias de Markov). Neste modelo, para o caso de um FP de segunda ordem, ao contrário dos modelos atualmente disponı́veis, apenas uma potência é estimada. Avalia-se este modelo a partir de dados simulados e em dados reais, sendo um deles com transformação de Box-Cox. / Abstract: In many practical situations the relationship between the response variable and one or more covariates is curved. Among the various ways of representing this curvature, Royston and Altman (1994) proposed an extended family of functions called Fractional Polynomials (FP). Bov´e and Held (2011) implemented the Bayesian paradigm for FP on the assumption of error normality. Their methodology is based on a hyperg prior distribution, which, in addition to many interesting asymptotic properties, guarantees a consistent Bayesian model average (BMA). In addition, a Bayesian approach is proposed for FPs models in which power, unlike the usual methods, can obtain any numerical real interval value and is estimated via HMC (Monte Carlo Hamiltonian) and MCMC (Markov chain Monte Carlo). In this model, in the case of a second-order FP, unlike the currently available models, only one power is estimated. This model is evaluated from simulated data and real data, one of them with Box-Cox transformation. / Doutor
3

Detecting Influential observations in spatial models using Bregman divergence / Detecção de observações influentes em modelos espaciais usando divergência de Bregman

Danilevicz, Ian Meneghel 26 February 2018 (has links)
How to evaluate if a spatial model is well ajusted to a problem? How to know if it is the best model between the class of conditional autoregressive (CAR) and simultaneous autoregressive (SAR) models, including homoscedasticity and heteroscedasticity cases? To answer these questions inside Bayesian framework, we propose new ways to apply Bregman divergence, as well as recent information criteria as widely applicable information criterion (WAIC) and leave-one-out cross-validation (LOO). The functional Bregman divergence is a generalized form of the well known Kullback-Leiber (KL) divergence. There is many special cases of it which might be used to identify influential points. All the posterior distributions displayed in this text were estimate by Hamiltonian Monte Carlo (HMC), a optimized version of Metropolis-Hasting algorithm. All ideas showed here were evaluate by both: simulation and real data. / Como avaliar se um modelo espacial está bem ajustado? Como escolher o melhor modelo entre muitos da classe autorregressivo condicional (CAR) e autorregressivo simultâneo (SAR), homoscedásticos e heteroscedásticos? Para responder essas perguntas dentro do paradigma bayesiano, propomos novas formas de aplicar a divergência de Bregman, assim como critérios de informação bastante recentes na literatura, são eles o widely applicable information criterion (WAIC) e validação cruzada leave-one-out (LOO). O funcional de Bregman é uma generalização da famosa divergência de Kullback-Leiber (KL). Há diversos casos particulares dela que podem ser usados para identificar pontos influentes. Todas as distribuições a posteriori apresentadas nesta dissertação foram estimadas usando Monte Carlo Hamiltoniano (HMC), uma versão otimizada do algoritmo Metropolis-Hastings. Todas as ideias apresentadas neste texto foram submetidas a simulações e aplicadas em dados reais.
4

Detecting Influential observations in spatial models using Bregman divergence / Detecção de observações influentes em modelos espaciais usando divergência de Bregman

Ian Meneghel Danilevicz 26 February 2018 (has links)
How to evaluate if a spatial model is well ajusted to a problem? How to know if it is the best model between the class of conditional autoregressive (CAR) and simultaneous autoregressive (SAR) models, including homoscedasticity and heteroscedasticity cases? To answer these questions inside Bayesian framework, we propose new ways to apply Bregman divergence, as well as recent information criteria as widely applicable information criterion (WAIC) and leave-one-out cross-validation (LOO). The functional Bregman divergence is a generalized form of the well known Kullback-Leiber (KL) divergence. There is many special cases of it which might be used to identify influential points. All the posterior distributions displayed in this text were estimate by Hamiltonian Monte Carlo (HMC), a optimized version of Metropolis-Hasting algorithm. All ideas showed here were evaluate by both: simulation and real data. / Como avaliar se um modelo espacial está bem ajustado? Como escolher o melhor modelo entre muitos da classe autorregressivo condicional (CAR) e autorregressivo simultâneo (SAR), homoscedásticos e heteroscedásticos? Para responder essas perguntas dentro do paradigma bayesiano, propomos novas formas de aplicar a divergência de Bregman, assim como critérios de informação bastante recentes na literatura, são eles o widely applicable information criterion (WAIC) e validação cruzada leave-one-out (LOO). O funcional de Bregman é uma generalização da famosa divergência de Kullback-Leiber (KL). Há diversos casos particulares dela que podem ser usados para identificar pontos influentes. Todas as distribuições a posteriori apresentadas nesta dissertação foram estimadas usando Monte Carlo Hamiltoniano (HMC), uma versão otimizada do algoritmo Metropolis-Hastings. Todas as ideias apresentadas neste texto foram submetidas a simulações e aplicadas em dados reais.
5

Métodos de Monte Carlo Hamiltoniano na inferência Bayesiana não-paramétrica de valores extremos / Monte Carlo Hamiltonian methods in non-parametric Bayesian inference of extreme values

Hartmann, Marcelo 09 March 2015 (has links)
Neste trabalho propomos uma abordagem Bayesiana não-paramétrica para a modelagem de dados com comportamento extremo. Tratamos o parâmetro de locação μ da distribuição generalizada de valor extremo como uma função aleatória e assumimos um processo Gaussiano para tal função (Rasmussem & Williams 2006). Esta situação leva à intratabilidade analítica da distribuição a posteriori de alta dimensão. Para lidar com este problema fazemos uso do método Hamiltoniano de Monte Carlo em variedade Riemanniana que permite a simulação de valores da distribuição a posteriori com forma complexa e estrutura de correlação incomum (Calderhead & Girolami 2011). Além disso, propomos um modelo de série temporal autoregressivo de ordem p, assumindo a distribuição generalizada de valor extremo para o ruído e determinamos a respectiva matriz de informação de Fisher. No decorrer de todo o trabalho, estudamos a qualidade do algoritmo em suas variantes através de simulações computacionais e apresentamos vários exemplos com dados reais e simulados. / In this work we propose a Bayesian nonparametric approach for modeling extreme value data. We treat the location parameter μ of the generalized extreme value distribution as a random function following a Gaussian process model (Rasmussem & Williams 2006). This configuration leads to no closed-form expressions for the highdimensional posterior distribution. To tackle this problem we use the Riemannian Manifold Hamiltonian Monte Carlo algorithm which allows samples from the posterior distribution with complex form and non-usual correlation structure (Calderhead & Girolami 2011). Moreover, we propose an autoregressive time series model assuming the generalized extreme value distribution for the noise and obtained its Fisher information matrix. Throughout this work we employ some computational simulation studies to assess the performance of the algorithm in its variants and show many examples with simulated and real data-sets.
6

Métodos de Monte Carlo Hamiltoniano na inferência Bayesiana não-paramétrica de valores extremos / Monte Carlo Hamiltonian methods in non-parametric Bayesian inference of extreme values

Marcelo Hartmann 09 March 2015 (has links)
Neste trabalho propomos uma abordagem Bayesiana não-paramétrica para a modelagem de dados com comportamento extremo. Tratamos o parâmetro de locação μ da distribuição generalizada de valor extremo como uma função aleatória e assumimos um processo Gaussiano para tal função (Rasmussem & Williams 2006). Esta situação leva à intratabilidade analítica da distribuição a posteriori de alta dimensão. Para lidar com este problema fazemos uso do método Hamiltoniano de Monte Carlo em variedade Riemanniana que permite a simulação de valores da distribuição a posteriori com forma complexa e estrutura de correlação incomum (Calderhead & Girolami 2011). Além disso, propomos um modelo de série temporal autoregressivo de ordem p, assumindo a distribuição generalizada de valor extremo para o ruído e determinamos a respectiva matriz de informação de Fisher. No decorrer de todo o trabalho, estudamos a qualidade do algoritmo em suas variantes através de simulações computacionais e apresentamos vários exemplos com dados reais e simulados. / In this work we propose a Bayesian nonparametric approach for modeling extreme value data. We treat the location parameter μ of the generalized extreme value distribution as a random function following a Gaussian process model (Rasmussem & Williams 2006). This configuration leads to no closed-form expressions for the highdimensional posterior distribution. To tackle this problem we use the Riemannian Manifold Hamiltonian Monte Carlo algorithm which allows samples from the posterior distribution with complex form and non-usual correlation structure (Calderhead & Girolami 2011). Moreover, we propose an autoregressive time series model assuming the generalized extreme value distribution for the noise and obtained its Fisher information matrix. Throughout this work we employ some computational simulation studies to assess the performance of the algorithm in its variants and show many examples with simulated and real data-sets.

Page generated in 0.0814 seconds