Return to search

A Lei de Weyl para o Laplaciano / The Weyl Law for the Laplacian

Demonstramos a Lei de Weyl sobre o comportamento assintótico dos autovalores do operador Laplaciano com condições de contorno de Dirichlet em domínios limitados e suaves com o auxílio do núcleo do calor. Para isso, fazemos um estudo dos operadores não-limitados, semigrupos e da transformada de Fourier. Por fim, expomos alguns resultados posteriores motivados pelo artigo de Mark Kac \"Can one hear the shape of a drum?\". / We prove the Weyl Law on the asymptotic behavior of eigenvalues of the Laplace operator with Dirichlet boundary conditions in smooth bounded domains with the help of the heat kernel. To that end, we study unbounded operators, semigroups and the Fourier transform. Lastly, we mention some further results motivated by Mark Kac\'s article \"Can one hear the shape of a drum?\".

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-08072019-142328
Date26 June 2019
CreatorsNeves, Rafael Moreira
ContributorsLopes, Pedro Tavares Paes
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguageEnglish
TypeDissertação de Mestrado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0032 seconds