Return to search

Alternative energy concepts for Swedish wastewater treatment plants to meet demands of a sustainable society

This report travels through multiple disciplines to seek innovative and sustainable energy solutions for wastewater treatment plants. The first subject is a report about increased global temperatures and an over-exploitation of natural resources that threatens ecosystems worldwide. The situation is urgent where the current trend is a 2°C increase of global temperatures already in 2040. Furthermore, the energy-land nexus becomes increasingly apparent where the world is going from a dependence on easily accessible fossil resources to renewables limited by land allocation. A direction of the required transition is suggested where all actors of the society must contribute to quickly construct a new carbon-neutral resource and energy system. Wastewater treatment is as required today as it is in the future, but it may move towards a more emphasized role where resource management and energy recovery will be increasingly important. This report is a master’s thesis in energy engineering with an ambition to provide some clues, with a focus on energy, to how wastewater treatment plants can be successfully integrated within the future society. A background check is conducted in the cross section between science, society, politics and wastewater treatment. Above this, a layer of technological insights is applied, from where accessible energy pathways can be identified and evaluated. A not so distant step for wastewater treatment plants would be to absorb surplus renewable electricity and store it in chemical storage mediums, since biogas is already commonly produced and many times also refined to vehicle fuel. Such extra steps could be excellent ways of improving the integration of wastewater treatment plants into the society. New and innovative electric grid-connected energy storage technologies are required when large synchronous electric generators are being replaced by ‘smaller’ wind turbines and solar cells which are intermittent (variable) by nature. A transition of the society requires energy storages, balancing of electric grids, waste-resource utilization, energy efficiency measures etcetera… This interdisciplinary approach aims to identify relevant energy technologies for wastewater treatment plants that could represent decisive steps towards sustainability.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:umu-146831
Date January 2018
CreatorsBrundin, Carl
PublisherUmeå universitet, Institutionen för tillämpad fysik och elektronik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0028 seconds