Return to search

High-Resolution Speleothem-Based Palaeoclimate Records From New Zealand Reveal Robust Teleconnection To North Atlantic During MIS 1-4

Growth rates, δ18O and δ13C of five stalagmites from the west coasts of North and South Islands, New Zealand, provide records of millennial-scale climate variability over the last ~75 kyr. Thirty-five uranium-series ages were used to provide the chronology. δ18O of stalagmite calcite was influenced by changes in moisture source region, temperature and both δ18O and δ13C primarily display a negative relationship with rainfall. To assist interpretation of climatic signals δ18O profiles were adjusted for the ice-volume effect. Changes in these proxies reflect changes in the strength of the circumpolar westerly circulation and the frequency of southwesterly flow across New Zealand. MIS 4 was a period of wet and cool climate lasting from 67.7 to 61.3 kyr B.P., expressed in the stalagmites by an interval of strongly negative isotope ratios and increased growth rate. This contrasts with less negative δ18O and δ13C, and slow growth, interpreted as dry and cold climate, during much of MIS 2. This difference between MIS 2 and MIS 4 provides an explanation for why glacial moraines in the Southern Alps of MIS 4 age lie beyond those deposited during the last glacial maximum (MIS 2). Heinrich events, with the exception of H0 (the Younger Dryas), are interpreted from high-resolution South Island stalagmite HW05-3, from Hollywood Cave, West Coast, as times of wetter and cooler climate. Minima in δ18O and δ13C (wet periods) occurred at 67.7-61.0, 56-55, 50.5-47.5, 40-39, 30.5-29, 25.5-24.3 and 16.1-15. kyr B.P. matching Heinrich events H6-H1 (including H5a) respectively. This demonstrates a robust teleconnection between events in the North Atlantic and New Zealand climate. Minima in δ18O also occurred at similar times in less well-dated North Island stalagmite RK05-3 from Ruakuri Cave, Waitomo. Speleothems from low-latitudes have revealed that Heinrich events forced southerly displacement of the Intertropical Convergence Zone. This caused steepening of the temperature gradient across mid-southern latitudes, increased westerly circulation and resulted in wet conditions on the west coast of both islands. Immediately following H1 in the HW05-3 stable isotope profiles is another excursion to more negative isotopic values, suggesting wet and cold climate, lasting from 14.6 to 13.0 kyr B.P. Such a climate on the West Coast at this time has been previously suggested from glacier advance (e.g. Waiho Loop moraine) and decreased abundance of tall trees on the landscape. This event occurred too early to be a response to H0, but is synchronous with a return to cool climate in Antarctica. Thus West Coast climate appears to have been sensitive to changes in Antarctica as well as the North Atlantic. Isotopic minima (wet and cool climate) in South Island stalagmite GT05-5, which formed during the Holocene, first occurred 4.6 kyr B.P. This began a series of four oscillations in isotope ratios, the last terminating when the stalagmite was collected (2006). Onset of these oscillations is associated with initiation of ice advance in the Southern Alps, and beginning of the Neoglacial. The last oscillation displays enriched isotope ratios lasting from 1.2 to 0.8 kyr B.P. succeeded by depleted ratios lasting until 0.15 kyr B.P., mirroring the Medieval Climate Optimum and Little Ice Age, respectively, of European palaeoclimate records.

Identiferoai:union.ndltd.org:ADTP/237996
Date January 2008
CreatorsWhittaker, Thomas Edward
PublisherThe University of Waikato
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
Rightshttp://www.waikato.ac.nz/library/research_commons/rc_about.shtml#copyright

Page generated in 0.0024 seconds