Return to search

Diamond Based-Materials: Synthesis, Characterization and Applications

The studies covered in this dissertation concentrate on the various forms of diamond films synthesized by chemical vapor deposition (CVD) method, including microwave CVD and hot filament CVD. According to crystallinity and grain size, a variety of diamond forms primarily including microcrystalline (most commonly referred to as polycrystalline) and nanocrystalline diamond films, diamond-like carbon (DLC) films were successfully synthesized. The as-grown diamond films were optimized by changing deposition pressure, volume of reactant gas hydrogen (H2) and carrier gas argon (Ar) in order to get high-quality diamond films with a smooth surface, low roughness, preferred growth orientation and high sp3 bond contents, etc. The characterization of diamond films was carried out by metrological and analytical techniques such as scanning electron microscopy (SEM), X-ray diffraction (XRD), atomic force microscopy (AFM) and Raman spectroscopy. The results of characterization served as feedback to optimize experimental parameters, so as to improve the quality of diamond films. A good understanding of the diamond film properties such as mechanical, electrical, optical and biological properties, which are determined by the qualities of diamond films, is necessary for the selection of diamond films for different applications. The nanocrystalline diamond nanowires grown by a combination of vapor-liquid-solid (VLS) method and CVD method in two stages, and the graphene grown on silicon substrate with nickel catalytic thin film by single CVD method were also investigated in a touch-on level.

Identiferoai:union.ndltd.org:USF/oai:scholarcommons.usf.edu:etd-4353
Date01 January 2011
CreatorsHu, Qiang
PublisherScholar Commons
Source SetsUniversity of South Flordia
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceGraduate Theses and Dissertations
Rightsdefault

Page generated in 0.0023 seconds