• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 9
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Transducteurs capacitifs micro-usinés pour l'imagerie échographique / Capacitive Micromachined Ultrasonic Transducers for ultrasound imaging

Legros, Mathieu 03 June 2013 (has links)
La conception des sondes ultrasonores pour l’imagerie médicale est traditionnellement basée sur l’utilisation de matériaux piézoélectriques. Depuis quelques années, est apparue la technologie des CMUTs, (Capacitive Micromachined Ultrasonic Transducers). Ces microsystèmes électromécaniques se présentent comme une alternative attractive à la piézoélectricité, offrant la possibilité d’explorer de nouveaux designs de sonde, et d’expérimenter de nouveaux modes d’imagerie. Ce travail s’inscrit dans une dynamique de développement et d’évaluation des sondes CMUTs, de la modélisation à la démonstration par l’image. Des transducteurs multi-éléments CMUTs ont ainsi été conçus, et des prototypes de sondes d’échographie finalisés ont pu être réalisés, ce en adaptant les développements à la transduction capacitive et aux systèmes d’imagerie conventionnels. Leurs comportements électroacoustiques et acoustiques ont été étudiés et comparés à des sondes standards. Finalement, des démonstrations par l’image ont été apportées, et les points forts de cette technologie pour l’imagerie médicale ont pu être établis. / Fabrication of ultrasound probes for medical imaging conventionally exploits piezoelectric based materials. CMUTs technology (Capacitive Micromachined Ultrasonic Transducers) has emerged about a decade ago. These electromechanical micro-systems are presented as an alternative transduction mode, and gives new opportunities for probe design and novel imaging techniques. This dissertation aims to develop and review CMUTs probes for ultrasound imaging, from modeling to imaging demonstration. Multi-elements transducers with CMUT technology have been thus developed, and ultrasound probes were successfully achieved. Developments have been carried out, taking care of both capacitive transduction and standard ultrasound systems. Electro-acoustic and acoustic behavior were evaluated and compared to the state of the art piezoelectric probes. Finally, quantitative imaging assessments have been performed and have pointed out the strengths of CMUT technology for ultrasound imaging
2

Modeling and optimization of capacitive micromachined ultrasonic transducers

Satir, Sarp 07 January 2016 (has links)
The objective of this research is to develop large signal modeling and optimization methods for Capacitive Micromachined Ultrasonic Transducers (CMUTs), especially when they are used in an array configuration. General modeling and optimization methods that cover a large domain of CMUT designs are crucial, as many membrane and array geometry combinations are possible using existing microfabrication technologies. Currently, large signal modeling methods for CMUTs are not well established and nonlinear imaging techniques utilizing linear piezoelectric transducers are not applicable to CMUTs because of their strong nonlinearity. In this work, the nonlinear CMUT behavior is studied, and a feedback linearization method is proposed to reduce the CMUT nonlinearity. This method is shown to improve the CMUT performance for continuous wave applications, such as high-intensity focused ultrasound or harmonic imaging, where transducer linearity is crucial. In the second part of this dissertation, a large signal model is developed that is capable of transient modeling of CMUT arrays with arbitrary electrical terminations. The developed model is suitable for iterative design optimization of CMUTs and CMUT based imaging systems with arbitrary membrane and array geometries for a variety of applications. Finally, a novel multi-pulse method for nonlinear tissue and contrast agent imaging with CMUTs is presented. It is shown that the nonlinear content can be successfully extracted from echo signals in a CMUT based imaging system using a multiple pulse scheme. The proposed method is independent of the CMUT geometry and valid for large signal operation. Experimental results verifying the developed large signal CMUT array model, proposed gap feedback and multi-pulse techniques are also presented.
3

Modeling and characterization of nonlinear phenomena in circular capacitive micromachined ultrasonic transducers with geometrical imperfections / Modélisation et caractérisation de phénomènes non linéaires dans des transducteurs ultrasoniques micro-usinés capacitifs circulaires avec des imperfections géométriques

Jallouli, Aymen 01 February 2018 (has links)
Les microsystèmes, qui sont réalisés à partir de technologies micro-électroniques, connaissent un essor scientifique et technologique important grâce à leurs applications qui sont de plus en plus présentes dans la vie courante. Un des microsystèmes très en vogue est le transducteur ultrasonore capacitif micro-usiné, couramment appelé CMUT. Il est utilisé pour transmettre ou réceptionner des ondes ultrasonores et son domaine d’application est très vaste puisqu’on le trouve dans des sondes d’imagerie médicale, dans des hauts parleurs ultra directifs, pour le contrôle non destructif de matériaux… Dans la plupart des applications la puissance acoustique émise par le CMUT doit être très élevée ce qui implique que le CMUT va être utilisé en régime non-linéaire. En outre, même en utilisant des procédés de fabrication avancés, la microplaque mobile constituant le CMUT possède une déformation géométrique dans son état de repos. Il faudra par conséquent tenir compte des non-linéarités et des imperfections géométriques lors de l’analyse statique et dynamique du CMUT.Dans ce travail le modèle multiphysique d’un CMUT est développé en tenant compte des non-linéarités géométriques et électrostatiques ainsi que de la déflexion initiale de la microplaque. Les équations différentielles du mouvement de la microplaque, issues de la théorie des plaques de von Kármán, sont discrétisées spatialement en utilisant la méthode différentielle quadratique. La réponse statique d’un CMUT a été analysée à partir de simulations numériques et d’essais expérimentaux, en considérant des plaques planes et des plaques courbes et on montre qu’une déflexion initiale de la plaque conduit à une augmentation de la tension de pull-in. Le comportement dynamique non-linéaire du CMUT est analysé en discrétisant la variable temporelle et en utilisant la méthode des différences finies. En utilisant la technique de continuation arclength, nous déterminons la réponse en fréquence non-linéaire du CMUT. Suivant la valeur de la tension DC, le CMUT aura un comportement raidissant ou assouplissant. Une validation expérimentale du modèle numérique est réalisée en utilisant des microplaques planes et des microplaques courbes. En particulier nous montrons que l’utilisation de microplaques courbes, dues aux imperfections géométriques, change la réponse en fréquence du CMUT, passant d’un comportement raidissant à un comportement assouplissant, augmente le domaine de bi-stabilité et modifie la topologie de bifurcation.Le modèle numérique est par la suite étendu afin d’analyser les effets du film d’air sur le comportement dynamique de la microplaque en couplant les équations mécaniques du CMUT avec les équations de Reynolds du fluide. Les fréquences de résonance du problème multiphysique sont obtenues par résolution d'un système linéaire amorti. La validation expérimentale et numérique du modèle est effectuée en déterminant les fréquences de résonance du CMUT à des pressions différentes. Nous montrons que l’air comprimé change la réponse dynamique du CMUT par l’ajout d’une raideur et d’un amortissement. La diminution de la pression conduit à une diminution de la fréquence de résonance du système couplé et tend vers la fréquence de résonance de la microplaque. D'autre part la réponse en fréquence du système devient non-linéaire due à la diminution du coefficient d'amortissement. A la pression atmosphérique, on montre que le CMUT a un comportement non-linéaire de type assouplissant lorsque les excitations sont élevées. Le modèle numérique développé est un outil efficace pour analyser les CMUTs et augmenter leurs performanaces. / Micro Electro Mechanical Systems (MEMS) have attracted the interest of scientists and engineers thanks to the variety of their applications and their significant roles in our real life. One of the most important microsystems is the capacitive micromachined ultrasonic transducer (CMUT), which is used for transmitting ultrasonic waves, for instance in medical imaging and therapy. In such applications, a high-transmitted acoustic power is needed which implies driving the CMUT in the nonlinear regime. Moreover, from a manufacturing point of view, the fabrication of a CMUT with a flat surface is extremely difficult even with the recent advances in the fabrication process. Modeling this type of microsystem while including the main sources of nonlinearities and geometric imperfections is a challenging step in understanding its static and dynamic behavior.In this thesis, a multiphysics model of imperfect CMUTs is developed taking into account the geometric and electrostatic nonlinearities. The governing equations of motions are derived from the von Kármán plate theory and spatially discretized using the Differential Quadrature Method (DQM). For the static response, numerical simulations and experimental characterizations have been conducted on flat and curved CMUTs, showing that a positive initial deflection leads to an increase in the pull-in voltage. The nonlinear dynamic behavior of a CMUT is studied by discretizing the time variable using the Finite Difference Method (FDM). The nonlinear frequency and force responses have been determined by combining FDM with the arclength continuation technique. It is shown that the CMUT can exhibit a hardening or softening behavior depending on the DC voltage. An experimental validation of the numerical model is performed for the case of flat and curved microplates. We demonstrate that the geometric imperfection modifies the nonlinear frequency response of a CMUT from hardening to softening, increases its bistability domain and permits the tuning of its bifurcation topology.The numerical model is extended to investigate the effect of an air film on the dynamic behavior of the microplate by coupling the nonlinear mechanical equations with the Reynolds equation. The complex resonance frequencies of the multi-physical problem are determined by solving the damped linear system. An experimental and numerical validation of the model is performed by determining the resonance frequencies at several static pressures. We demonstrate that the air film is able to modify the dynamic response of the CMUT by adding stiffness and damping. By decreasing the static pressure, the resonance frequency of the coupled problem decreases and becomes closer to the natural resonance frequency of the microplate. Moreover, the frequency response of the system becomes nonlinear due the decrease in the damping coefficient. At atmospheric pressure, the softening type behavior of the CMUT is obtained by applying high excitation levels. The presented numerical model is a very efficient tool to understand the nonlinear dynamic behavior CMUTs and to enhance their performances.
4

Micromachined Broadband Acoustic Transducers with Integrated Optical Displacement Detection

Hall, Neal Allen 19 November 2004 (has links)
Micromachined microphones with diffraction-based optical displacement detection are presented. A compliant membrane is made part of a phase sensitive diffraction grating, and the deflection resulting from external acoustic pressure alters the intensities of the diffracted orders which are monitored with integrated photodiodes. The scheme provides the displacement sensitivity of a Michelson interferometer and can be integrated without beam splitters or critical alignment problems into volumes on the order of 1mm³. The method is implemented and characterized using microphone membranes with integrated diffraction grating back electrodes fabricated on silicon using Sandia National Laboratories' dedicated processing platform. Detailed response characterization in both air and vacuum environments is performed to extract the diaphragm properties and high frequency cutoff frequencies of the microphone. Results from a finite element model of the microphone structure are in good agreement with measured data. The sensor's internal noise is characterized with measurements performed in the anechoic acoustic test facility at Georgia Tech. While utilizing 2.4mW of laser power, an (A) weighted displacement resolution of 6×10⁻⁴Å/√Hz is measured which is limited by thermal acoustic noise caused by the microphone's back-plate flow resistance.
5

Development And Microfabrication Of Capacitive Micromachinedultrasound Transducers With Diamond Membranes

Cezar, Mehmet 01 February 2011 (has links) (PDF)
This thesis presents the development and microfabrication of capacitive micromachined ultrasonic transducers (CMUT) with diamond membranes for the first time in the literature. Although silicon and silicon nitride (Si3N4) membranes have been generally used as the membrane material in CMUTs. These membrane materials have moderate properties that can cause damage during the operation of CMUTs. In this thesis, a new material for the membrane is introduced for CMUTs. Diamond has exceptional potential in the area of micro-nano technologies due to unrivalled stiffness and hardness, excellent tribological performance, highly tailorable and stable surface chemistry, high thermal conductivity and low thermal expansion, high acoustic velocity of propagating waves, and biocompatibility. Based on these excellent material properties, diamond is employed in the new generation CMUT structures for more robust and reliable operations. The microfabrication process of CMUT has been generally performed with either sacrificial release process or wafer bonding technique. High yield and low cost features of wafer bonding process makes it preferable for CMUT devices. In this thesis, plasma-activated direct wafer bonding process was developed for the microfabrication of 16-element 1-D CMUT arrays with diamond membranes. They were designed to operate at different resonance frequencies in the range of 1 MHz and 10 MHz with different cell diameters (120, 88, 72, 54, 44 &mu / m) and element spacing (250, 375 &mu / m). 1-D CMUT array devices can be used for focusing ultrasound applications. The electronic circuit for 1-D CMUT devices with diamond membranes was designed and implemented on PCB for the ultrasound focusing experiment. This electronic circuit generates continuous or burst AC signals of &plusmn / 15 V with different and adjustable phase shifting options at 3 MHz frequency. 16 elements of 72 &mu / m 1-D CMUT array were successfully tested. Fully functional 7 elements of 1-D CMUT array are focused at an axial distance of 5.81 mm on the normal to the CMUT center plane. The CMUT array was excited using 10 Vp&minus / p with 10 cycles sinusoidal signals at 3 MHz. The microfabrication process and focusing ultrasound of 1-D CMUT devices with diamond membranes are done successfully in this thesis.
6

Méthodes et outils pour la fabrication de transducteurs ultrasonores en silicium / Methods and tools for the fabrication of silicon micromachined ultrasonic transducers

Bellaredj, Mohamed Lamine Fayçal 08 July 2013 (has links)
L’utilisation des ultrasons pour l’imagerie présente plusieurs avantages : elle est extrêmement sure car ellen'utilise pas de radiations ionisantes et ne présente pas d'effets néfastes sur la santé. D’autre part, elle donne desrésultats d’excellente qualité avec un coût relativement faible. Historiquement, les matériaux piézoélectriques et leurscomposites ont été très tôt utilisés pour la génération d’ultrasons. Les transducteurs fabriqués à partir de ces matériauxdominent actuellement le marché des sondes ultrasonores. Cependant, pour certaines applications, ils ne peuvent pasêtre utilisés pour des raisons de dimensionnement et de limitations dues aux propriétés des matériaux. Une solutionpeut être apportée par l’utilisation des transducteurs ultrasonores capacitifs micro-usinés dits CMUTs. Ces dernierssuscitent un intérêt croissant dans le milieu de l’imagerie ultrasonore et sont considérés comme une alternativepotentielle et viable aux transducteurs piézoélectriques. Cette nouvelle technologie CMUTs est caractérisée par uneplus large bande passante, une sensibilité élevée, une facilité de fabrication et une réduction des coûts de production.Cette thèse est consacrée à la mise en place d’un certain nombre d’outils théoriques et expérimentaux permettant lamodélisation/conception, la fabrication et la caractérisation de transducteurs CMUTs à membrane circulaire pourl’émission des ultrasons. Nous commençons par développer des outils de simulation à base de calculs par élémentsfinis, permettant la compréhension et la modélisation du comportement électromécanique des CMUTs pour laconception et le dimensionnement des cellules élémentaires et des réseaux. Nous proposons par la suite un nouveauprocédé de fabrication de transducteurs CMUTs basé sur le collage anodique d’une couche de silicium monocristallind’épaisseur fixe d’une plaquette de SOI sur un substrat de verre. L’évolution du procédé de fabrication est détailléepour chaque étape technologique en soulignant à chaque fois les améliorations/modifications apportées pour unefiabilité et une répétitivité accrue associées à une connaissance des limites de faisabilité. Dans la dernière partie de cetravail, on s’intéresse à la mise en œuvre de plusieurs plateformes expérimentales permettant différentescaractérisations électromécaniques statiques et dynamiques des dispositifs CMUTs fabriqués / The use of ultrasound imaging has several advantages: it is extremely safe because it does not use ionizingradiation and has no adverse effects on health. It gives excellent quality results with a relatively low cost. Historically,piezoelectric materials and their composites have been early used for ultrasound generation. Transducers made fromthese materials dominate currently the ultrasonic probes market. However, for some applications, they can’t bebecause of design and limitation reasons due to material properties. A solution can be provided by the use ofcapacitive micromachined ultrasonic transducers CMUTs. A growing interest in the field of the ultrasound imaging isshown to this technology considered as a potential and viable alternative to piezoelectric transducers andcharacterized by a wide bandwidth, high sensitivity, ease of manufacture and reduce production costs. This thesis isdevoted to the establishment of a number of experimental and theoretical tools for the modeling/design, fabricationand characterization of circular membrane CMUTs transducers for ultrasound transmission. We begin by developingsimulation tools based on finite elements method in order to understand/model the CMUTs electromechanicalbehavior for the design and dimensioning of elementary cells and networks. Thereafter, we introduce a new CMUTtransducers fabrication process based on the anodic bonding a fixed thickness single crystal silicon layer of a SOIwafer on a glass substrate. The process evolution is detailed for each technological step highlighting everyimprovements/changes introduced for increased reliability and repeatability associated with an increased knowledgeof feasibility limits. In the last part of this work, we focus on the implementation of several experimental platformsallowing different static and dynamic electromechanical characterizations of the fabricated CMUTs devices.
7

Diamond Based-Materials: Synthesis, Characterization and Applications

Hu, Qiang 01 January 2011 (has links)
The studies covered in this dissertation concentrate on the various forms of diamond films synthesized by chemical vapor deposition (CVD) method, including microwave CVD and hot filament CVD. According to crystallinity and grain size, a variety of diamond forms primarily including microcrystalline (most commonly referred to as polycrystalline) and nanocrystalline diamond films, diamond-like carbon (DLC) films were successfully synthesized. The as-grown diamond films were optimized by changing deposition pressure, volume of reactant gas hydrogen (H2) and carrier gas argon (Ar) in order to get high-quality diamond films with a smooth surface, low roughness, preferred growth orientation and high sp3 bond contents, etc. The characterization of diamond films was carried out by metrological and analytical techniques such as scanning electron microscopy (SEM), X-ray diffraction (XRD), atomic force microscopy (AFM) and Raman spectroscopy. The results of characterization served as feedback to optimize experimental parameters, so as to improve the quality of diamond films. A good understanding of the diamond film properties such as mechanical, electrical, optical and biological properties, which are determined by the qualities of diamond films, is necessary for the selection of diamond films for different applications. The nanocrystalline diamond nanowires grown by a combination of vapor-liquid-solid (VLS) method and CVD method in two stages, and the graphene grown on silicon substrate with nickel catalytic thin film by single CVD method were also investigated in a touch-on level.
8

Méthodes et outils pour la fabrication de transducteurs ultrasonores en silicium

Bellaredj, Mohamed Lamine Fayçal 08 July 2013 (has links) (PDF)
L'utilisation des ultrasons pour l'imagerie présente plusieurs avantages : elle est extrêmement sure car ellen'utilise pas de radiations ionisantes et ne présente pas d'effets néfastes sur la santé. D'autre part, elle donne desrésultats d'excellente qualité avec un coût relativement faible. Historiquement, les matériaux piézoélectriques et leurscomposites ont été très tôt utilisés pour la génération d'ultrasons. Les transducteurs fabriqués à partir de ces matériauxdominent actuellement le marché des sondes ultrasonores. Cependant, pour certaines applications, ils ne peuvent pasêtre utilisés pour des raisons de dimensionnement et de limitations dues aux propriétés des matériaux. Une solutionpeut être apportée par l'utilisation des transducteurs ultrasonores capacitifs micro-usinés dits CMUTs. Ces dernierssuscitent un intérêt croissant dans le milieu de l'imagerie ultrasonore et sont considérés comme une alternativepotentielle et viable aux transducteurs piézoélectriques. Cette nouvelle technologie CMUTs est caractérisée par uneplus large bande passante, une sensibilité élevée, une facilité de fabrication et une réduction des coûts de production.Cette thèse est consacrée à la mise en place d'un certain nombre d'outils théoriques et expérimentaux permettant lamodélisation/conception, la fabrication et la caractérisation de transducteurs CMUTs à membrane circulaire pourl'émission des ultrasons. Nous commençons par développer des outils de simulation à base de calculs par élémentsfinis, permettant la compréhension et la modélisation du comportement électromécanique des CMUTs pour laconception et le dimensionnement des cellules élémentaires et des réseaux. Nous proposons par la suite un nouveauprocédé de fabrication de transducteurs CMUTs basé sur le collage anodique d'une couche de silicium monocristallind'épaisseur fixe d'une plaquette de SOI sur un substrat de verre. L'évolution du procédé de fabrication est détailléepour chaque étape technologique en soulignant à chaque fois les améliorations/modifications apportées pour unefiabilité et une répétitivité accrue associées à une connaissance des limites de faisabilité. Dans la dernière partie de cetravail, on s'intéresse à la mise en œuvre de plusieurs plateformes expérimentales permettant différentescaractérisations électromécaniques statiques et dynamiques des dispositifs CMUTs fabriqués
9

Design and Development of Capacitive Micromachined Ultrasonic Transducers

Ahmad, Babar January 2012 (has links) (PDF)
This thesis presents the design and analysis for development of a Capacitive Micromachined Ultrasonic Transducer (CMUT), a novel sensor and actuator, aimed at replacing the conventional piezoelectric transducers for air-coupled ultrasonic imaging applications. These CMUTs are fabricated using the silicon micromachining technology wherein all fabrication is done on the surface of a silicon wafer by means of thin-film depositions, patterning with photolithography and etching. The main emphasis of this study is on developing analytical models that serve as effective design tools for the development of these devices. A desirable goal of such study is to create reasonable mathematical models, obtain analytical solutions, wherever possible, for various measures of transducer performance and provide design aids. A logical start is the lumped parameter modeling wherein the explicit dependence of the physical parameters on the spatial extent of the device is ignored. The system lumped parameters, such as the equivalent stiffness, the equivalent mass, and the equivalent damping are extracted from reasonable analytical or numerical models and subsequently used in the static and dynamic analysis of the device. Useful predictions are made with regard to the key transducer parameters, such as, the pull-in voltage, the static deflection, the dynamic response and the acoustic field produced. The modeling work presented embodies two main objectives: (i) it serves to provide direction in the design phase, and, (ii) it serves to aid in the extraction of critical parameters which affect the device behavior. Comparison of the results with the more rigorous FEM simulations as well as with those present in the existing literature assure that the developed models are accurate enough to serve as useful design tools. The distributed parameter modeling is presented next. Analysis of MEMS devices which rely on electrostatic actuation is complicated due to the fact that the structural deformations alter the electrostatic forces, which redistribute and modify the applied loads. Hence, it becomes imperative to consider the electro-elastic coupling aspect in the design of these devices. An approximate analytical solution for the static deflection of a thin, clamped circular plate caused by electrostatic forces which are inherently nonlinear, is presented. The model is based on the Kirchhoff-Love assumptions that the plate is thin and the deflections and slopes are small. The classical thin-plate theory is adequate when the ratio of the diameter to thickness of the plate is very large, a situation commonly prevalent in many MEMS devices, especially the CMUTs. This theory is used to determine the static deflection of the CMUT membrane due to a DC bias voltage. The thin-plate electro-elastic equation is solved using the Galerkin weighted residual technique under the assumption that the deflections are small in comparison to the thickness of the plate. The results obtained are compared to those obtained from ANSYS simulations and an excellent agreement is observed between the two. The pull-in voltage predicted by our model is close to the value predicted by ANSYS simulations. A simple analytical formula, which gives fairly accurate results (to within 3% of the value predicted by ANSYS simulations) for determination of the pull-in voltage, is also presented. As stated, this formula accounts for the elastic deflection of the membrane due to the coupled interaction with the electrostatic field. The effect of vacuum sealing the backside cavity of a CMUT is investigated in some detail. The presence or absence of air inside the cavity has a marked effect upon the system parameters, such as the natural frequency and the pull-in voltage. The possibility of using sealed CMUT cavities with air inside at ambient pressure is explored. In order to estimate the transducer loss due to the presence of air in the sealed cavity, the squeeze film forces resulting from the compression of the trapped air film are evaluated. Towards this end, the linearized Reynolds equation is solved in conjunction with the appropriate boundary conditions, taking the flexure of the membrane into account. From this analysis, it is concluded that, for a sealed CMUT cavity, the presence of air does not cause any squeeze film damping even when the flexure of the membrane is taken into account (the case of a rigid plate is already known). Although the emphasis of the study undertaken here is not on the physical realization of a working CMUT, a single cell as well as a linear array based on the design presented here, were fabricated (in a foundry elsewhere) in order to verify some of the most fundamental device parameters from experimental measurements. The fabricated devices have been characterized for their resonant frequency, quality factor, and structural integrity. These tests were conducted using the laser Doppler vibrometer and the Focused Ion Beam milling. Having investigated thoroughly the behavior of a single cell, we proceed to demonstrate how these cells can be arranged optimally in the form of an array to provide a comprehensive ultrasonic imaging system. A thorough analysis of the requirements for the array architecture is undertaken to determine the optimal configuration. The design constraints that need to be taken into account for CMUT arrays, especially for NDE applications, are presented. The main issue of designing an array consisting of a large number of CMUT cells required for producing a pressure wave of sufficient strength which is detectable upon reflection from the desired location even after suffering severe attenuation resulting from propagation in various media is addressed. A scalable annular array architecture of CMUT cells is recommended based on the analysis carried out.

Page generated in 0.0214 seconds