L'objectif de cette thèse est l'étude de la formation de nanoparticules carbonées dans un plasma basse pression. Les poussières sont créées par pulvérisation d'une couche de polymère déposée sur l'électrode d'une décharge radio fréquence à couplage capacitif. La présence des poudres perturbe et modifie les propriétés du plasma. La croissance des poudres peut notamment déclencher des instabilités basse fréquence qui évoluent avec la taille et la densité des poudres. Au centre du plasma, une région sans poudre, appelée void, est souvent observée. Cette région se caractérise en particulier par une forte luminosité. Différents diagnostics (mesures électriques, imagerie vidéo rapide, Fluorescence Induite par Laser) sont utilisées afin d'analyser ces différents comportements résultant des interactions entre le plasma et les poussières. L'analyse approfondie des instabilités a permis de mettre en évidence plusieurs régimes et d'extraire leurs principales caractéristiques comme leur durée et l'évolution de leurs fréquences. Ces instabilités se traduisent par la formation de petites "boules" de plasma qui se déplacent et interagissent au sein de celui-ci. Des phénomènes particulièrement surprenants de fusion et de division de ces boules ont été mis en évidence. Concernant le void, nos travaux ont confirmé la forte excitation présente dans cette zone. Dans la dernière partie de la thèse, la dissociation de l'aluminium triisopropoxide(ATI) est étudiée dans un plasma à l'aide de la Spectroscopie infrarouge à Transformée de Fourier. Ce diagnostic nous a permis de mettre en évidence l'évolution de la densité d'ATI en fonction des paramètres de la décharge. Nous avons également quantifié les différents composants hydrocarbonés formés par polymérisation. / The objective of this thesis is to study the formation of carbonaceous nanoparticles in a low pressure plasma. Dust particles are created by sputtering a polymer layer deposited on the bottom electrode of a capacitively coupled radio-frequency discharge. The presence of dust particles disturbs and changes the plasma properties. The growth of dust particles can trigger low frequency instabilities that evolve with the dust particle size and density. In the center of the discharge, the void, a dust-free region, is observed. It is characterized by an enhanced luminosity. Different diagnostics (electrical measurements, high speed imaging, Laser Induced Fluorescence) are used in order to understand these different behaviors resulting from plasma-dust particle interactions. Dust particle growth instabilities are investigated showing the existence of different instability regimes. Their main characteristics are extracted such as their duration and their evolution frequency. These instabilities are characterized by the formation of small plasma spheroids moving and interacting in the discharge. Several interesting phenomena are evidenced such as the merging and splitting of these plasma spheroids. Concerning the void, our investigations confirmed the high excitation occurring in this region. In the last part of the thesis, the dissociation of aluminium triisopropoxide (ATI) is studied in a plasma using Fourier Transform InfraRed spectroscopy. Thanks to this diagnostic, the evolution of ATI density has been studied as a function of the discharge parameters. We have also quantified the different hydrocarbon compounds formed by polymerization.
Identifer | oai:union.ndltd.org:theses.fr/2013ORLE2033 |
Date | 24 October 2013 |
Creators | Tawidian, Hagop-Jack |
Contributors | Orléans, Mikikian, Maxime |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0027 seconds