Orientadores: Maicon Ribeiro Correa, Eduardo Cardoso de Abreu / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-27T11:41:21Z (GMT). No. of bitstreams: 1
Silva_FelipeAugustoGuedesda_M.pdf: 1119470 bytes, checksum: eeabeb98750e53492e778b99174c0887 (MD5)
Previous issue date: 2015 / Resumo: O foco do presente trabalho consiste no estudo computacional de métodos de Galerkin Descontínuo para aproximação numérica de problemas diferenciais de natureza hiperbólica, com enfoque em esquemas explícitos e no uso de aproximações do tipo Runge-Kutta no tempo para aproximação de problemas lineares e não-lineares. Especificamente, serão exploradas as boas propriedades de estabilidade local, no tempo, dos métodos da classe Runge-Kutta em conjunto com funções de fluxo numérico estáveis e com o uso de limitadores de inclinação, com o objetivo de desenvolver métodos Galerkin Descontínuo de alta ordem capazes de obter uma boa resolução de gradientes abruptos e de soluções descontínuas, sem oscilações espúrias, em problemas hiperbólicos. Uma breve discussão sobre esquemas de volumes finitos centrais de alta ordem é apresentada, onde são introduzidos importantes conceitos a serem utilizados na construção dos métodos de Galerkin Descontínuo. Um conjunto representativo de simulações numéricas de modelos hiperbólicos lineares e não-lineares é apresentado e discutido para avaliar a qualidade das aproximações obtidas em uma comparação direta com outras aproximações precisas de volumes finitos ou com soluções exatas, sempre que possível / Abstract: The focus of this work is the computational study of some Discontinuous Galerkin methods for the numerical approximation of first order hyperbolic differential problems, focusing on explicit schemes with discretization based on Runge-Kutta type methods in time, in problems with linear and nonlinear fluxes. Specifically, the good local stability properties of Runge-Kutta methods are combined with stable numerical flux functions and slope limiters in order to propose new higher-order Discontinuous Galerkin methods that achieve high resolution of abrupt gradients and of discontinuous solutions, without spurious oscillations in numerical solutions. Furthermore, a brief discussion about higher-order finite volume central schemes is presented in order to introduce some important concepts to be used in the construction of the DG methods. A representative set of numerical simulations for linear and nonlinear hyperbolic models is presented and discussed, in order to check the accuracy of the obtained Discontinuous Galerkin solutions by comparing their results with those of existing well-established finite volume numerical methods and exact solutions / Mestrado / Matematica Aplicada / Mestre em Matemática Aplicada
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.unicamp.br:REPOSIP/305877 |
Date | 27 August 2018 |
Creators | Silva, Felipe Augusto Guedes da, 1991- |
Contributors | UNIVERSIDADE ESTADUAL DE CAMPINAS, Abreu, Eduardo Cardoso de, 1974-, Correa, Maicon Ribeiro, 1979-, Borges, Márcio Rentes, Loula, Abimael Fernando Dourado |
Publisher | [s.n.], Universidade Estadual de Campinas. Instituto de Matemática, Estatística e Ciência da Computação, Programa de Pós-Graduação em Matemática Aplicada |
Source Sets | IBICT Brazilian ETDs |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | 94 p. : il., application/pdf |
Source | reponame:Repositório Institucional da Unicamp, instname:Universidade Estadual de Campinas, instacron:UNICAMP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0024 seconds