Denna avhandling behandlar läsning av matematiska texter; hur och vad man förstår och lär sig vid läsningen. Fokus ligger på läsprocessen, det vill säga själva läsandet av texten och vad man förstår efter att läst igenom texten. Huvudsyftet är att studera specifika aspekter i läsandet av just matematiska texter för att testa och utveckla en befintlig, allmän teori kring läsprocessen. Speciellt studeras användningen av symboler i matematiska texter och hur detta kan påverka läsprocessen. Avhandlingen byggs upp av teoretiska diskussioner kring läsning av matematiska texter samt en empirisk studie bland gymnasieelever och universitetsstuderande. De teoretiska diskussionerna utgår bland annat från en litteraturstudie kring förekommande påståenden om speciella egenskaper hos matematiska texter, och speciellt diskuteras läsning av symboler och algebraiska uttryck. Den empiriska studien (med 106 deltagare) använde tre olika texter; en historietext om ryska revolutionen samt två matematiktexter om gruppteori. Matematiktexterna behandlar samma sak som gruppteori, men skillnaden mellan dem är att den ena använder matematiska symboler i sin presentation medan den andra inte alls använder symboler. Varje deltagare fick läsa en utav matematiktexterna samt historietexterna, och fick efter varje text besvara frågor om textens innehåll. Den grupp av personer som läste matematiktexten utan symboler har bättre resultat på frågor om texten än den grupp som läste texten med symboler. Detta verkar kunna bero på oförmåga att artikulera symboler vid läsning av texten samt att avkodningsförmågan inte verkar kunna utnyttjas på samma sätt för texten med symboler. Läsning av matematiska texter med symboler är alltså ganska speciellt och man kan behöva lära sig hur man läser sådana texter. Däremot verkar det finnas många likheter med läsning av matematiska texter utan symboler och historietexten. Det matematiska innehållet verkar alltså inte i någon större omfattning påverka läsprocessen, utan hur detta innehåll presenteras är en viktig aspekt. I de teoretiska diskussionerna ges förslag på hur läsning av matematiska symboler kan infogas i den allmänna teorin för läsprocessen. Överlag finns dock ingen anledning att se läsning av matematiska texter som någon speciell typ av process som skiljer sig från läsning av andra texter. Den allmänna teorin för läsprocessen kan därmed fungera som teoretisk grund även för läsförståelse av matematiska texter, möjligen med föreslaget tillägg om matematiska symboler. / <p>Rapportkod: LiU-Tec-Lic-2004:63.</p>
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-5679 |
Date | January 2004 |
Creators | Österholm, Magnus |
Publisher | Linköpings universitet, Tillämpad matematik, Linköpings universitet, Tekniska högskolan, Matematiska institutionen |
Source Sets | DiVA Archive at Upsalla University |
Language | Swedish |
Detected Language | Swedish |
Type | Licentiate thesis, monograph, info:eu-repo/semantics/masterThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Linköping Studies in Science and Technology. Thesis, 0280-7971 ; 1134 |
Page generated in 0.0022 seconds