Return to search

Eine vergleichende biophysikalische Analyse von Hitze- und Trockentoleranzstrategien der Wüstenpflanze Phoenix dactylifera und Nutzpflanzen der gemäßigten Klimazonen / A comparative biophysical analysis of heat and drought tolerance strategies of the desert plant Phoenix dactylifera and crops of temperate climates

Der Klimawandel geht einher mit einem Anstieg der globalen Durchschnittstemperatur und einem dadurch induzierten Wassermangel. Diese beiden abiotischen Stressfaktoren führen zu einer Reduzierung der landwirtschaftlichen Erträge und Biomassen von Kulturpflanzen. Daher ist eine Anpassung der betroffenen Pflanzenarten an das sich ändernde Klima erforderlich, um die landwirtschaftliche Produktivität in Zukunft aufrechtzuerhalten. Gegenwärtig ist unser Wissen über Strategien zur Toleranz gegenüber abiotischem Stress sowie über Genom- und Transkriptionsinformationen auf wenige Modellorganismen von Angiospermen beschränkt, so dass diese Informationen die Basis für die Forschung an Trockenheit und Hitzestress darstellen. Die Untersuchung der Stressadaption innerhalb und zwischen verschiedenen Pflanzengattungen ist von besonderer Relevanz. Vor diesem Hintergrund habe ich im Rahmen meiner Doktorarbeit die Überlebensstrategie der extremophilen Wüstenpflanze Phoenix dactylifera (Dattelpalme) im Vergleich zu zwei Mesophilen, der Kulturpflanze Hordeum vulgare (Gerste) und der Modellpflanze Arabidopsis thaliana, untersucht.
Dattelpalmen sind nicht sukkulente Wüstenpflanzen, die auch unter extremen Trocken- und Hitzebedingungen in den Wüsten der Arabischen Halbinsel wachsen und ertragreich Früchte produzieren. In Phoenix dactylifera ist bislang weder die Molekularbiologie und –physiologie der Schließzellen, vor allem der Anionenkanäle, verstanden, noch wurde der Hitzeschutz ihrer Zuckertransportproteine untersucht.
Um die stomatäre Reaktion auf das Trockenstresshormon ABA (Abscisinsäure) zu verstehen, klonierten wir die Hauptkomponenten des schnellen ABA-Signalwegs von Schließzellen und analysierten den Öffnungsmechanismus der Anionenkanäle aus der Dattelpalme und der Gerste vergleichend zu dem Anionenkanal aus Arabidopsis im heterologen Expressionssystem der Xenopus Oozyten. Beide monokotyledonen Pflanzenarten (Gerste und Dattelpalme) besitzen stomatäre Komplexe, die aus Schließzellen und Nebenzellen bestehen. Dies unterscheidet die Monokotyledonen von den Dikotyledonen, die normalerweise Stomakomplexe aufweisen, die nur aus einem Paar Schließzellen gebildet werden. Interessanterweise schlossen sich Dattelpalmen- und Gerstenstomata als Reaktion auf das Trockenstresshormon ABA nur in Gegenwart von extrazellulärem Nitrat.
Der heterolog-exprimierte Anionenkanal PdSLAC1 wird durch die ABA-Kinase PdOST1 aktiviert und diese Aktivierung wird durch die Koexpression der PP2C-Phosphatase ABI1 gehemmt. Daher wird PdSLAC1 wie seine Orthologen aus Gerste und Arabidopsis durch ein ABA-abhängiges Phosphorylierungs-/Dephosphorylierungsnetzwerk gesteuert. PdOST1 aktivierte den Anionenkanal PdSLAC1 jedoch nur in Gegenwart von extrazellulärem Nitrat - eine elektrische Eigenschaft, die PdSLAC1 mit HvSLAC1 der Gerste gemein hat, sich jedoch von AtSLAC1 unterscheidet. Angesichts der Tatsache, dass in Gegenwart von Nitrat ABA den Stomaschluss verstärkt und beschleunigt, deuten unsere Ergebnisse darauf hin, dass bei Dattelpalmen und Gerste Nitrat als Ligand zum Öffnen von SLAC1 benötigt wird. Dies initiiert die Depolarisation der Schließzellen und leitet schließlich den Stomaschluss ein, um den Wasserverlust der Pflanzen unter Trockenstressbedingungen zu minimieren.
Um die monokotyledone spezifische Nitratabhängigkeit von SLAC1 zu verstehen, führten wir ortsgerichtete Mutagenesestudien auf Basis eines 3D-Modells durch, welche zudem vergleichende Studien an Chimären von Monokotylen- und Dikotylen-SLAC1 Anionenkanälen umfassten. Unsere Struktur-Funktions-Forschung identifizierte zwei Aminosäurenreste auf der Transmembrandomäne 3 (TMD3), die eine wesentliche Rolle bei der Nitrat-abhängigen Regulierung von SLAC1 Anionenkanälen monokotyledoner Pflanzen spielen. Die phylogenetische Analyse ergab schließlich, dass während der Evolution die für Monokotlyedonen spezifische Nitrat-abhängige Regulierung erst nach der Trennung in Monokotyledonen und Dikotyledonen auftrat. Durch die Nitrat-sensitive Regulierung von SLAC1 Anionenkanälen beruht der schnelle Stomaschluss von Monokotyledonen auf dem Zusammenspiel des Trockenstresshormons ABA und dem Stickstoffhaushalt der Pflanze. Da der ABA-Signalweg von Arabidopsis umfassend untersucht wurde, könnte die Entdeckung des monokotyledonen spezifischen Nitrat-abhängigen Motivs in TMD3 nun als Stellschraube zur Verbesserung der Züchtungsprogramme dikotyledoner Nutzpflanzen dienen.
Wüstenpflanzen leiden nicht nur unter Trockenheit, sondern auch unter extremem Hitzestress. Wir konnten zeigen, dass hitzebelastete Dattelpalmen große Mengen der flüchtigen Kohlenwasserstoffverbindung Isopren (2-Methyl-1,3-Butadien) produzieren und emittieren. Durch die vorübergehende Freisetzung von Isopren kann die Pflanze die Photosynthese auch bei extremen Temperaturen betreiben. Es ist jedoch nicht bekannt, ob und wie Isopren in Hitzeperioden auch Transportprozesse durch biologische Membranen schützt. Um den Einfluss von Isopren auf den Transmembrantransport zu untersuchen, identifizierten und klonierten wir den Protonen-gekoppelten Saccharosetransporter 1 (PdSUT1) der Dattelpalme und verglichen seine elektrischen Eigenschaften mit ZmSUT1 (Zea mays Sucrose Transporter 1) im heterologen Expressionssystem der Xenopus Oozyten. Interessanterweise waren das elektrische Verhalten, die kinetischen Eigenschaften und die Temperaturabhängigkeit beider Transporter ähnlich. Die Anwendung von Isopren veränderte jedoch massiv die Affinität von ZmSUT1 zu seinem Substrat Saccharose, während die Affinität des Transporters der Dattelpalme nur schwach beeinflusst wurde. Es wird angenommen, dass die Membranfluidität unter Hitzestress erniedrigt ist, welches durch Interkalierung von Isopren mit den Fettsäureketten biologischer Membrane einhergeht. Dies und die Unempfindlichkeit von PdSUT1 gegenüber Isopren deuten darauf hin, dass der Saccharosetransporter PdSUT1 aus der Wüstenpflanze auch bei hohen Temperaturen Saccharose mit hoher Affinität transportiert. Zukünftige Studien müssen nun klären, ob der flüchtige Kohlenwasserstoff Isopren einen direkten Einfluss auf den Transporter selbst hat oder Isopren in die Membran integriert und damit indirekt die Eigenschaften von Transportproteinen beeinflusst. Unabhängig von der Wirkungsweise von Isopren sollte nicht unerwähnt bleiben, dass PdSUT1 gegenüber Isopren weniger empfindlich ist als sein Ortholog ZmSUT1 aus Mais. Dies kann auf eine Anpassung des Saccharosetransporters an die extremen Hitzeperioden und die damit einhergehende Isoprenemission von Dattelpalmen zurückzuführen sein. / Low water availability and heat stress present major barriers to achievíng high biomass and full yield potential in crops. Global climate change is accompanied by a subtle increase in the severity of these abiotic stresses. Thus, the adaptation of crop species to the changing climate is required in order to sustain agricultural productivity in the future. Currently, our knowledge of plant strategies for abiotic stress tolerance as well as genomic and transcriptional information is limited to a few model angiosperms, providing a starting point for the understanding of responses to drought and/or heat stress, within and across species.
In the framework of my PhD thesis, we followed a different strategy to learn about abiotic stress tolerance: we studied the survival strategy of the extremophilic desert plant Phoenix dactylifera (date palm) in comparison to the crop Hordeum vulgare (barley) and the model plant Arabidopsis thaliana, both from temperate zones. Date palms grow and produce fruits even under extreme drought and heat conditions in the deserts of the Arabian Peninsula. Neither the molecular biology and physiology of guard cells nor the heat protection of transport protein mediated sugar and ion transport processes have been studied so far in this non-succulent desert plant, Phoenix dactylifera.
To understand the stomatal response to the water stress phytohormone ABA (abscisic acid), we cloned the major components for guard cell fast abscisic acid signaling and analysed the anion channel opening mechanism of the date palm side by side with barley and Arabidopsis in Xenopus oocytes. Both monocot plant species (barley and date palm) possess stomatal complexes consisting of guard cells and subsidiary cells. This distinguishes monocot species from dicots, which usually exhibit stomatal complexes formed by a pair of guard cells only. Interestingly, date palm and barley stomata closed in response to the drought stress hormone ABA only in the presence of extracellular nitrate.
Heterologously expressed Phoenix SLAC1-type anion channel PdSLAC1 is activated by the ABA kinase PdOST1 and this activation is inhibited by the coexpression of PP2C phosphatase ABI1 – thus like its counterparts from barley and Arabidopsis, PdSLAC1 is controlled by an ABA-dependent phosphorylation/dephosphorylation network. However, PdOST1 did activate the desert plant anion channel PdSLAC1 only in the presence of extracellular nitrate – an electrical property that PdSLAC1 shares with the barley SLAC1 but distinguishes both monocot SLAC1 channels from AtSLAC1. Given that, in the presence of nitrate, ABA enhanced and accelerated stomatal closure, our findings indicate that the guard cell osmotic motor driving stomatal closure in date palm and barley uses nitrate as the signal to open the major anion channel SLAC1. This initiates guard cell depolarization and finally stomatal closure to prevent plant wilting under drought stress conditions.
To understand the monocot-specific SLAC1 nitrate dependency, we performed a 3D-model- based site-directed mutagenesis study including chimeric channels between monocot and dicot SLAC1 anion channels. Our structure-function research identified two residues on transmembrane domain 3 (TMD3) that play an essential role in nitrate-dependent gating of monocot SLAC1-type anion channels. Phylogenetic analysis finally revealed that during evolution the monocot specific nitrate-dependent gating was established after the split between monocots and dicots. Thus, the success of monocot species may in part rely on the integration of drought signals (ABA) and the nitrogen nutrition status of the plant via nitrate-sensitive gating of SLAC1 anion channels. Since the Arabidopsis ABA-signaling pathway has been extensively studied, the discovery of the monocot-specific nitrate dependent motif on TMD3 could now serve as a set screw to improve the breeding programs of dicot agricultural crops.
Desert plants not only suffer from drought but also from extreme heat stress. We could show that heat-stressed date palms produce and emit high amounts of the volatile hydrocarbon compound isoprene (2-Methyl-1,3-Butadien). The temporary release of isoprene allows the plant to perform photosynthesis even under extreme temperatures. However, it is not known whether and how isoprene also protects transport processes across biological membranes in periods of heat. To study the influence of isoprene on transmembrane transport, we identified and cloned the date palm proton-coupled sucrose transporter 1 (PdSUT1) and compared its electrical properties with ZmSUT1 (Zea mays Sucrose Transporter 1) in the heterologous expression system of Xenopus oocytes. Interestingly, the electrical behavior, the kinetic properties and the temperature dependence of both carriers were similar. However, the response to isoprene application massively altered the affinity of ZmSUT1 to its substrate sucrose while the affinity of the date palm transporter was only weakly affected. The intercalation of isoprene with the fatty acid chains of biological membranes is believed to decrease the membrane fluidity under heat stress. This and the insensitivity of PdSUT1 towards isoprene may indicate that the desert plant sucrose transporter PdSUT1 transports sucrose with high affinity even at high temperatures. Future studies must now clarify whether the volatile hydrocarbon isoprene has a direct influence on the carrier itself or isoprene integrates into the membrane and thus indirectly influences the properties of transport proteins. Regardless of the mode of action of isoprene, it remains to be noted that PdSUT1 is less sensitive to isoprene than its orthologue from maize. This may be an adaptation of the sucrose carrier to the extreme heat periods and the accompanying isoprene emission from date palms.

Identiferoai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:18649
Date January 2020
CreatorsSchäfer, Nadine
Source SetsUniversity of Würzburg
Languagedeu
Detected LanguageGerman
Typedoctoralthesis, doc-type:doctoralThesis
Formatapplication/pdf
Rightshttps://opus.bibliothek.uni-wuerzburg.de/doku/lic_ohne_pod.php, info:eu-repo/semantics/openAccess

Page generated in 0.0056 seconds