La condition de monotonie pour les sous-variétés lagrangiennes a été introduite par Oh en 1993. C'est une version relative d'une condition définie par Floer pour les variétés symplectiques. Ces conditions permettent d'obtenir la bonne définition d'homologies de type Floer, en particulier de l'homologie de Floer lagrangienne, outil très utile pour l'étude de plongements lagrangiens.<br /> <br />Dans cette thèse, nous exploitons les hypothèses de monotonie en théorie de Floer sous deux aspects. Un premier aspect est l'étude d'une nouvelle famille d'exemples de variétés symplectiques monotones et de leurs sous-variétés lagrangiennes monotones. Cette famille d'exemples est construite par découpe symplectique à partir du cotangent de variétés munies d'une action libre du cercle. Un second aspect est la construction d'une homologie de type Floer-Novikov pour des sous-variétés lagrangiennes d'un cotangent qui sont dites monotones sur les lacets. On en déduit de nouveaux résultats d'obstruction de plongements lagrangiens monotones sur les lacets dans le cotangent de variétés qui fibrent sur le cercle.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00286624 |
Date | 14 June 2008 |
Creators | Gadbled, Agnès |
Publisher | Université Louis Pasteur - Strasbourg I |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0023 seconds