Dynamic problems in footbridges, such as sensible vibrations caused by human induced loading, has on a number of occasions been observed. These vibrations are rarely an ultimate limit state problem, but can be perceived as unpleasant by the pedestrian. In design guidelines there are propositions for how to asses the dynamic problem. However, they only take the walking load into account. It has been shown that, in the case of a running load, accelerations that lie above the comfort zone can occur and that running loads are more severe than walking loads in some cases. It is possible that the running load case has to be considered in future guidelines, and finding a feasible design methodology demands a lot of work. In this thesis, a method aimed to be easily used by a designer is analyzed. The amplitude of acceleration received as a result from a dynamic analysis in a commercial FEM software, was reduced by reduction factors to generate accelerations closer to reality. This could be identified and verified against recommendations.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-229814 |
Date | January 2018 |
Creators | Södergren, Jones, Barraza, Anton |
Publisher | KTH, Bro- och stålbyggnad |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-ABE-MBT ; 18162 |
Page generated in 0.002 seconds