L’utilisation accrue des nanomatériaux manufacturés (NM) fait en sorte que les différents acteurs de réglementation se questionnent de plus en plus par rapport à leur destin et leurs impacts sur les écosystèmes et la santé humaine suite à leur rejet dans l’environnement. Le développement de techniques analytiques permettant de détecter et de caractériser les NM en matrice environnementale est impératif étant donné la nécessité d’évaluer le risque relié à ces polluants émergents.
Une des approches de plus en plus favorisée est d’utiliser une technique chromatographique et un ou plusieurs détecteurs sensibles dans les buts de réduire les effets de matrice, d’identifier des nanoparticules (NP) selon leurs temps de rétention et de les quantifier à des concentrations représentatives de la réalité environnementale. Une technique analytique utilisant la chromatographie hydrodynamique (HDC) et des détecteurs en ligne ou hors ligne (détecteurs de diffusion statique ou dynamique de la lumière, spectromètre de masse par torche à plasma en mode particule unique (SP-ICPMS), l’ultracentrifugation analytique) a donc été développée.
Le couplage de la colonne HDC avec ces détecteurs a permis de caractériser des NP standards et l’optimisation des conditions de séparation de ces nanoparticules de polystyrène, d’or et d’argent a permis de confirmer que les NP y sont bel et bien séparées seulement selon leur taille, tel que la théorie le prédit. De plus, l’utilisation de la colonne HDC couplée au SP-ICPMS a permis de séparer un mélange de nanoparticules d’argent (nAg) et de les détecter à des concentrations représentatives de celles rencontrées dans l’environnement, soit de l’ordre du μg L-1 au ng L-1. Par exemple, dans un échantillon d’eau usée (effluent), un mélange de nAg de 80 et de 40 nm a été séparé et les nAg ont été détectées à l’aide du SP-ICPMS connecté à la colonne HDC (temps de rétention de 25.2 et 25.6 minutes et diamètres déterminés de 71.4 nm et 52.0 nm). Finalement, pour plusieurs échantillons environnementaux auxquels aucun ajout de nanoparticules n’a été fait, les analyses HDC-SP-ICPMS effectuées ont permis de déterminer qu’ils ne contenaient initialement pas de nAg. / Due to the widespread use of engineered nanoparticles (ENP), regulatory agencies are very concerned about their fate and their impacts on the environment and on human health. The development of analytical techniques, which will allow the detection, characterization and quantification of ENP in environmental matrices, is therefore critical in order to properly evaluate the exposure associated with these emerging pollutants.
One promising approach to detect and quantify the nanoparticles is to couple a chromatographic technique to a sensitive detector in order to: (i) reduce matrix effects; (ii) identify nanoparticles from their retention times and (iii) quantify the ENP at environmentally relevant concentrations. Consequently, the coupling of hydrodynamic chromatography (HDC) was performed with both on-line and off-line detectors (light scattering detectors, inductively coupled plasma mass spectrometer in its single particle mode (SP-ICPMS) and an analytical ultracentrifuge).
HDC was first used for the characterization of ENP standards. Separation conditions were optimized for standard nanoparticle suspensions of polystyrene, gold and silver, which allowed us to confirm that the separation was occurring, based on hydrodynamic size, as predicted by theory. By coupling the HDC column to the ICPMS detector in its ‘‘single particle’’ mode, it was possible to separate an ENP mixture and to detect the nanoparticles at environmental concentrations, i.e., in the μg L-1 to ng L-1 range. For example, in a wastewater sample (effluent wastewater), a mixture of two silver nanoparticles (nAg) of 40 and 80 nm were separated and the nAg were detected by SP-ICPMS at retention times of 25.2 and 25.6 minutes. Diameters of 71.4 nm and 52.0 nm were found. HDC-SP-ICPMS analysis carried out on different non-spiked wastewater samples allowed us to conclude that nAg was below the detection limit of 0.1 µg L-1.
Identifer | oai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/11591 |
Date | 10 1900 |
Creators | Proulx, Kim |
Contributors | Wilkinson, Kevin James |
Source Sets | Université de Montréal |
Language | French |
Detected Language | French |
Type | Thèse ou Mémoire numérique / Electronic Thesis or Dissertation |
Page generated in 0.0021 seconds