Return to search

The value of hydrological information in multireservoir systems operation

La gestion optimale d’un système hydroélectrique composé de plusieurs réservoirs est un problème multi-étapes complexe de prise de décision impliquant, entre autres, (i) un compromis entre les conséquences immédiates et futures d’une décision, (ii) des risques et des incertitudes importantes, et (iii) de multiple objectifs et contraintes opérationnelles. Elle est souvent formulée comme un problème d’optimisation, mais il n’existe pas, à ce jour, de technique de référence même si la programmation dynamique (DP) a été souvent utilisée. La formulation stochastique de DP (SDP) permet la prise en compte explicite de l’incertitude entourant les apports hydrologiques futurs. Différentes approches ont été développées pour incorporer des informations hydrologiques et climatiques autres que les apports. Ces études ont révélé un potentiel d’amélioration des politiques de gestion proposées par les formulations SDP. Cependant, ces formulations sont applicables aux systèmes de petites tailles en raison de la célèbre « malédiction de la dimensionnalité ». La programmation dynamique stochastique duale (SDDP) est une extension de SDP développée dans les années 90. Elle est l’une des rares solutions algorithmiques utilisées pour déterminer les politiques de gestion des systèmes hydroélectriques de grande taille. Dans SDDP, l’incertitude hydrologique est capturée à l’aide d’un modèle autorégressif avec corrélation spatiale des résidus. Ce modèle analytique permet d’obtenir certains des paramètres nécessaires à l’implémentation de la technique d’optimisation. En pratique, les apports hydrologiques peuvent être influencés par d’autres variables observables, telles que l’équivalent de neige en eau et / ou la température de la surface des océans. La prise en compte de ces variables, appelées variables exogènes, permet de mieux décrire les processus hydrologiques et donc d’améliorer les politiques de gestion des réservoirs. L’objectif principal de ce doctorat est d’évaluer la valeur économique des politiques de gestion proposées par SDDP et ce pour diverses informations hydro-climatiques. En partant d’un modèle SDDP dans lequel la modélisation hydrologique est limitée aux processus Makoviens, la première activité de recherche a consisté à augmenter l’ordre du modèle autorégressif et à adapter la formulation SDDP. La seconde activité fut dédiée à l’incorporation de différentes variables hydrologiques exogènes dans l’algorithme SDDP. Le système hydroélectrique de Rio Tinto (RT) situé dans le bassin du fleuve Saguenay-Lac-Saint-Jean fut utilisé comme cas d’étude. Étant donné que ce système n’est pas capable de produire la totalité de l’énergie demandée par les fonderies pour assurer pleinement la production d’aluminium, le modèle SDDP a été modifié de manière à considérer les décisions de gestion des contrats avec Hydro Québec. Le résultat final est un système d’aide à la décision pour la gestion d’un large portefeuille d’actifs physiques et financiers en utilisant diverses informations hydro-climatiques. Les résultats globaux révèlent les gains de production d’énergie auxquels les opérateurs peuvent s’attendre lorsque d’autres variables hydrologiques sont incluses dans le vecteur des variables d’état de SDDP. / The optimal operation of a multireservoir hydroelectric system is a complex, multistage, stochastic decision-making problem involving, among others, (i) a trade-off between immediate and future consequences of a decision, (ii) considerable risks and uncertainties, and (iii) multiple objectives and operational constraints. The reservoir operation problem is often formulated as an optimization problem but not a single optimization approach/algorithm exists. Dynamic programming (DP) has been the most popular optimization technique applied to solve the optimization problem. The stochastic formulation of DP (SDP) can be performed by explicitly considering streamflow uncertainty in the DP recursive equation. Different approaches to incorporate more hydrologic and climatic information have been developed and have revealed the potential to enhance SDP- derived policies. However, all these techniques are limited to small-scale systems due to the so-called curse of dimensionality. Stochastic Dual Dynamic Programming (SDDP), an extension of the traditional SDP developed in the 90ies, is one of the few algorithmic solutions used to determine the operating policies of large-scale hydropower systems. In SDDP the hydrologic uncertainty is captured through a multi-site periodic autoregressive model. This analytical linear model is required to derive some of the parameters needed to implement the optimization technique. In practice, reservoir inflows can be affected by other observable variables, such snow water equivalent and/or sea surface temperature. These variables, called exogenous variables, can better describe the hydrologic processes, and therefore enhance reservoir operating policies. The main objective of this PhD is to assess the economic value of SDDP-derived operating policies in large-scale water systems using various hydro-climatic information. The first task focuses on the incorporation of the multi-lag autocorrelation of the hydrologic variables in the SDDP algorithm. Afterwards, the second task is devoted to the incorporation of different exogenous hydrologic variables. The hydroelectric system of Rio Tinto (RT) located in the Saguenay-Lac-Saint-Jean River Basin is used as case study. Since, RT’s hydropower system is not able to produce the entire amount of energy demanded at the smelters to fully assure the aluminum production, a portfolio of energy contacts with Hydro-Québec is available. Eventually, we end up with a decision support system for the management of a large portfolio of physical and financial assets using various hydro-climatic information. The overall results reveal the extent of the gains in energy production that the operators can expect as more hydrologic variables are included in the state-space vector.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/28228
Date24 April 2018
CreatorsPina Fulano, Jasson
ContributorsTilmant, Amaury, Côté, Pascal
Source SetsUniversité Laval
LanguageFrench
Detected LanguageFrench
Typethèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat
Format1 ressource en ligne (xii, 96 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0164 seconds