Return to search

Lieu singulier des variétés duales : approche géométrique et applications aux variétés homogènes.

On doit à Friedrich Knop un étonnant théorème qui établit un lien entre algèbres de Lie simples de type A-D-E, et singularités simples de même type. Le résultat est le suivant : on considère la projectivisation de l'orbite de plus haut poids pour l'action adjointe d'un groupe de Lie simple sur son algèbre de Lie (une telle variété est appelée variété adjointe). Il existe alors un hyperplan tangent à l'orbite ayant un unique point singulier du même type que celui de l'algèbre de Lie. Ce théorème est le point de départ de nos travaux. Afin de mieux comprendre ce lien, nous étudions la géométrie des variétés duales des variétés adjointes. Dans le premier chapitre nous prouvons une version duale du théorème de Knop. Notre théorème permet d'obtenir le discriminant d'une singularité simple à partir de la duale de la variété adjointe. L'hyperplan considéré par Knop s'interprète alors comme un point très singulier de la duale. Dans le deuxième chapitre nous considérons le lieu singulier de la duale pour une variétés projective lisse. Nous montrons que l'existence de certaines strates de dimensions maximales équivaut à l'existence de section hyperplane de la variété d'origine admettant des points singuliers d'un type donné. Nous insistons alors sur l'importance de deux strates qui ont un sens géométrique : la duale de la variété des tangentes et la duale de la variété des sécantes. Enfin dans un dernier chapitre nous appliquons ces résultats à l'étude de la normalité des duales des variétés homogènes.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00737441
Date10 September 2004
CreatorsFrédéric, Holweck
PublisherUniversité Paul Sabatier - Toulouse III
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.002 seconds