Spelling suggestions: "subject:"hyperdéterminants"" "subject:"hyperdeterminants""
1 |
Lieu singulier des variétés duales : approche géométrique et applications aux variétés homogènes.Frédéric, Holweck 10 September 2004 (has links) (PDF)
On doit à Friedrich Knop un étonnant théorème qui établit un lien entre algèbres de Lie simples de type A-D-E, et singularités simples de même type. Le résultat est le suivant : on considère la projectivisation de l'orbite de plus haut poids pour l'action adjointe d'un groupe de Lie simple sur son algèbre de Lie (une telle variété est appelée variété adjointe). Il existe alors un hyperplan tangent à l'orbite ayant un unique point singulier du même type que celui de l'algèbre de Lie. Ce théorème est le point de départ de nos travaux. Afin de mieux comprendre ce lien, nous étudions la géométrie des variétés duales des variétés adjointes. Dans le premier chapitre nous prouvons une version duale du théorème de Knop. Notre théorème permet d'obtenir le discriminant d'une singularité simple à partir de la duale de la variété adjointe. L'hyperplan considéré par Knop s'interprète alors comme un point très singulier de la duale. Dans le deuxième chapitre nous considérons le lieu singulier de la duale pour une variétés projective lisse. Nous montrons que l'existence de certaines strates de dimensions maximales équivaut à l'existence de section hyperplane de la variété d'origine admettant des points singuliers d'un type donné. Nous insistons alors sur l'importance de deux strates qui ont un sens géométrique : la duale de la variété des tangentes et la duale de la variété des sécantes. Enfin dans un dernier chapitre nous appliquons ces résultats à l'étude de la normalité des duales des variétés homogènes.
|
2 |
Invariants des hypermatricesLuque, Jean-Gabriel 12 December 2008 (has links) (PDF)
Ce mémoire est consacré à la théorie des invariants des hypermatrices. <br />L'origine de la théorie des invariants date du milieu du XIX ième siècle. Le problème général, tel qu'il fut énoncé par Cayley en 1843, consiste à trouver une description de l'algèbre des polynômes invariants dans le but d'automatiser le raisonnement géométrique. <br />Assez rapidement de fortes limitations dues à la taille des calculs se manifestèrent et cette discipline se trouva de moins en moins étudiées jusque dans les années 1950 lorsque fut développée la théorie géométrique des invariants. De nos jours, l'accroissement de la puissance de calcul permet de compléter d'anciens travaux qui n'avaient pu aboutir faute de moyen informatique ainsi que de traiter de nouveaux cas. L'intérêt de cette discipline s'est accru depuis peu grâce à la découverte d'un lien avec une notion issue de la mécanique quantique et qui est à la base de l'informatique quantique: l'intrication. Le phénomène d'intrication est apparu en 1937, sous la plume sceptique de trois physiciens, Einstein , Podolsky et Rozen qui voyaient en lui une preuve de la non consistance de la théorie quantique, et est connu depuis sous le nom de paradoxe EPR. Depuis, de nombreuses expériences, dont la célèbre expérience d'Alain Aspect, ont confirmé l'existence des états intriqués.<br />Ce mémoire se décompose en deux parties. Dans la première, nous exposons les techniques fondamentales de la théorie des invariants ainsi que le lien avec l'intrication tel qu'il a été proposé par A. Klyachko. Nous montrons que l'implémentation de l'algorithme de Gordan sur un système de calcul formel permet de calculer des ensembles fondamentaux d'invariants et de covariants de certaines formes multilinéaires. En particulier, nous illustrons ce type de calcul en donnant un système complet de générateurs de l'algèbre des covariants pour une forme quadrilinéaire (système de 4-qubits). Nous montrons aussi les limites de cette approche : en donnant des éléments de calcul de la forme quintilinéaire (système de 5-qubits), nous voyons que la complexités sur-exponentielle des algèbres d'invariants interdit la généralisation de cette méthode. Pire, même si la description de ces algèbres en terme de générateurs et relations pouvait être obtenue, celle-ci serait humainement inexploitable. Nous proposons alors des pistes consistant à ne considérer que certains invariants ayant des propriétés remarquables (par exemple en étudiant la structure de Cohen-Macaulay de ces algèbres). La seconde partie est consacrée à un invariant particulier, l'hyperdéterminant. Ce polynôme généralise le déterminant de la façon la plus simple possible : il s'agit d'une somme multi-alternée sur le produit de plusieurs groupes symétriques. Après avoir donné quelques propriétés générales, nous étudions certains cas particuliers comme les hyperdéterminants de Hankel, ou les hyperdéterminants de tenseurs dont les entrées ne dépendent que du pgcd des indices etc... De nombreux résultats de cette partie sont appliqués au calcul d'intégrales itérés. En particulier, nous donnons une généralisation du théorème de Heine, une preuve alternative de l'intégrale de Selberg et des généralisations des intégrales de de Bruijn.
|
Page generated in 0.0901 seconds