Return to search

Hyperparameter optimisation using Q-learning based algorithms / Hyperparameteroptimering med hjälp av Q-learning-baserade algoritmer

Machine learning algorithms have many applications, both for academic and industrial purposes. Examples of applications are classification of diffraction patterns in materials science and classification of properties in chemical compounds within the pharmaceutical industry. For these algorithms to be successful they need to be optimised,  part of this is achieved by training the algorithm, but there are components of the algorithms that cannot be trained. These hyperparameters have to be tuned separately. The focus of this work was optimisation of hyperparameters in classification algorithms based on convolutional neural networks. The purpose of this thesis was to investigate the possibility of using reinforcement learning algorithms, primarily Q-learning, as the optimising algorithm.  Three different algorithms were investigated, Q-learning, double Q-learning and a Q-learning inspired algorithm, which was designed during this work. The algorithms were evaluated on different problems and compared to a random search algorithm, which is one of the most common optimisation tools for this type of problem. All three algorithms were capable of some learning, however the Q-learning inspired algorithm was the only one to outperform the random search algorithm on the test problems.  Further, an iterative scheme of the Q-learning inspired algorithm was implemented, where the algorithm was allowed to refine the search space available to it. This showed further improvements of the algorithms performance and the results indicate that similar performance to the random search may be achieved in a shorter period of time, sometimes reducing the computational time by up to 40%. / Maskininlärningsalgoritmer har många tillämpningsområden, både akademiska och inom industrin. Exempel på tillämpningar är, klassificering av diffraktionsmönster inom materialvetenskap och klassificering av egenskaper hos kemiska sammansättningar inom läkemedelsindustrin. För att dessa algoritmer ska prestera bra behöver de optimeras. En del av optimering sker vid träning av algoritmerna, men det finns komponenter som inte kan tränas. Dessa hyperparametrar måste justeras separat. Fokuset för det här arbetet var optimering av hyperparametrar till klassificeringsalgoritmer baserade på faltande neurala nätverk. Syftet med avhandlingen var att undersöka möjligheterna att använda förstärkningsinlärningsalgoritmer, främst ''Q-learning'', som den optimerande algoritmen.  Tre olika algoritmer undersöktes, ''Q-learning'', dubbel ''Q-learning'' samt en algoritm inspirerad av ''Q-learning'', denna utvecklades under arbetets gång. Algoritmerna utvärderades på olika testproblem och jämfördes mot resultat uppnådda med en slumpmässig sökning av hyperparameterrymden, vilket är en av de vanligare metoderna för att optimera den här typen av algoritmer. Alla tre algoritmer påvisade någon form av inlärning, men endast den ''Q-learning'' inspirerade algoritmen presterade bättre än den slumpmässiga sökningen.  En iterativ implemetation av den ''Q-learning'' inspirerade algoritmen utvecklades också. Den iterativa metoden tillät den tillgängliga hyperparameterrymden att förfinas mellan varje iteration. Detta medförde ytterligare förbättringar av resultaten som indikerade att beräkningstiden i vissa fall kunde minskas med upp till 40% jämfört med den slumpmässiga sökningen med bibehållet eller förbättrat resultat.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kau-78096
Date January 2020
CreatorsKarlsson, Daniel
PublisherKarlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf, application/pdf
Rightsinfo:eu-repo/semantics/openAccess, info:eu-repo/semantics/openAccess

Page generated in 0.0028 seconds