CdSe quantum dots produced by organometallic synthesis are useful as tunable emitters for photonic devices and as multi-colored protein markers for biomedical imaging, applications requiring bright and narrow emission. A diffusion-limited model helped monitor growth rates via photoluminescence and absorbance spectroscopy, in order to characterize synthesis kinetics in stearic acid, dodecylamine, and in trioctylphosphine oxide. The nucleation rate increased with Se concentration, while the growth rate followed the Cd concentration.
Emission peak widths, emission redshift rates, nanocrystal growth rates, and reactant concentrations all decreased to a minimum when emission reached the critical wavelength, at a reaction completion time, tc. The temperature dependence of 1/tc and of redshift rates followed Arrhenius behavior governed by activation energies, which were tailored by the choice of solvent. Synthesis in solvents, such as stearic acid, with lower activation energies produced faster initial nanocrystal growth and longer critical wavelengths. The highest photoluminescence quantum yield was generally at wavelengths shorter than the critical wavelength, when moderate growth rates enabled surface reconstruction while precursors were still available. / Ph. D.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/27322 |
Date | 27 April 2005 |
Creators | Dickerson, Bryan Douglas |
Contributors | Materials Science and Engineering, Claus, Richard O., Davis, Richey M., Love, Brian J., Robertson, John L., Spillman, William B. Jr., Meissner, Kenith E. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Language | English |
Detected Language | English |
Type | Dissertation, Text |
Format | 1 volu, application/pdf, application/pdf, application/pdf, application/pdf, application/pdf, application/pdf, application/pdf, application/pdf, application/pdf, application/pdf, application/pdf, application/pdf, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Relation | OCLC# 93606649, Ch3History.pdf, Ch0aTitle.pdf, Ch9Appendix.pdf, Ch2Theory.pdf, Ch1Applications.pdf, Ch0bTOC.pdf, Ch10Vita.pdf, Ch6Results.pdf, Ch7Discussion.pdf, Ch4Hypothesis.pdf, Ch8Refs.pdf, Ch5Experimental.pdf |
Page generated in 0.0029 seconds