Return to search

Detection Of Malicious Activity in Network Traffic on a Binary Representation using Image Analysis

In this thesis, we explore the idea of using binary visualization and image analysis to detect anomalous activity on an Industrial Internet of Things (IIoT) based network. The data is gathered into a pcap file and then fed into our encoder, which uses a space-filling curve to convert the 1-dimensional stream of data into pixels with a specific red, blue, and green gradient value.  The pixels create an image which is then given to an image analysis system based on a Convolutional Neural Network, which classifies if the traffic supplied is malicious or not. The results show that using a Binary and Multiclass classifier approach to the image analysis both work well reaching an accuracy of 100% and 94% respectively. While the binary classifier is more accurate both succeed at separating Malicious from Benign traffic. The choice of space-filling curves in our binary visualization ended up having little to no impact on overall classification accuracy.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:hh-47186
Date January 2022
CreatorsHjerpe, Joar, Karlsson, Oliver
PublisherHögskolan i Halmstad, Akademin för informationsteknologi
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.002 seconds