L’habileté des enzymes à évoluer joue un rôle fondamental dans l'adaptation des organismes à leur environnement, leur permettant de s'adapter aux changements de température, aux nutriments disponibles ou encore à l'introduction de composés cytotoxiques. Au cours des dernières décennies, cette capacité a conduit à l'émergence rapide de mécanismes de résistance aux antibiotiques chez des bactéries pathogènes pour l’humain, notamment dans le cas de l'antibiotique synthétique triméthoprime. Dix ans après l'introduction de cet antibiotique, l'enzyme dihydrofolate réductase de type B (DfrB) a été identifiée comme conférant une résistance aux bactéries l'exprimant en catalysant par voie d’enzyme alternative la réaction inhibée par l’antibiotique.
Des études structurales, cinétiques et mécanistiques de la DfrB en ont révélé la nature atypique, et suggèrent que cette enzyme est un modèle d’enzyme primitive. En particulier, son site actif unique est formé via l’interface de quatre protomères identiques. Puisque les DfrB ne sont pas apparentées sur le plan évolutif à des protéines connues et caractérisées, on ne connait pas comment elles ont évolué pour ultimement contribuer à la résistance au triméthoprime, et en particulier comment leur capacité catalytique a émergé au sein du petit domaine codé par leurs gènes. Ainsi, cette thèse vise à approfondir notre compréhension de l’évolution des enzymes en examinant spécifiquement l’évolution des DfrB et les propriétés qui ont guidé ce processus.
Puisque les gènes des DfrB ont rarement été rapportés, je présente d’abord nos efforts déployés pour identifier et caractériser de manière génomique les DfrB dans les bases de données publiques. Ces efforts ont conduit à la découverte, pour la première fois, de DfrB en dehors du contexte clinique. Nous avons ensuite caractérisé, sur le plan biophysique et enzymatique, des homologues protéiques aux DfrB que nous avons identifiés dans des bases de données de protéines putatives. Nous avons démontré la capacité d’homologues identifiés dans des contextes environnementaux, non associés aux activités humaines, à catalyser la réduction du dihydrofolate de la même façon que les DfrB. Enfin, une large exploration d’homologues de séquence, suivie d'une caractérisation expérimentale et computationnelle, nous a permis d'identifier des homologues distants des DfrB, certains capables de procurer une résistance au triméthoprime, et d'autres dépourvus de cette capacité. Ces résultats nous ont permis de proposer un modèle expliquant l’émergence de l'activité catalytique au sein du domaine protéique des DfrB.
En résumé, cette thèse présente une approche multidisciplinaire pour l’exploration et la caractérisation de l’espace de séquence d’une famille de protéines. Cette approche, qui comprend des analyses génomiques, enzymologiques, biophysiques et bio-informatiques, nous a permis d’identifier les caractéristiques structurales et de séquences nécessaires à la formation d’une enzyme DfrB fonctionnelle. Nous avons également proposé un modèle pour expliquer l’évolution de cette enzyme primitive. Dans l’ensemble, nos résultats suggèrent que la capacité catalytique des DfrB a évolué indépendamment de l’introduction de l’antibiotique triméthoprime, et donc que ce mécanisme de résistance existait dans l’environnement préalablement à son recrutement génomique dans un contexte clinique.
Ces travaux contribuent à notre compréhension fondamentale des mécanismes sous-jacents à l’émergence de l’activité catalytique au sein d’un domaine protéique non catalytique, et informent les études des mécanismes développés par les bactéries pour proliférer en présence d’antibiotiques. / The ability of enzymes to evolve plays a fundamental role in the adaptation of organisms to their environment, allowing them to adjust to changes in temperature, available nutrients, or the introduction of cytotoxic compounds. In recent decades, this ability has led to the rapid emergence of antibiotic resistance mechanisms in human pathogenic bacteria, particularly in the case of the synthetic antibiotic trimethoprim. Ten years after the introduction of this antibiotic, the type B dihydrofolate reductase (DfrB) was identified as conferring resistance to bacteria expressing it by providing an alternative enzyme to catalyze the reaction inhibited by the antibiotic.
Structural, kinetic, and mechanistic studies of DfrB have revealed its atypical nature and suggest that this enzyme is a model of a primitive enzyme. In particular, its unique active site is formed by the interface of four identical protomers. Since DfrB enzymes are not evolutionarily related to any known and characterized proteins, it is not known how they evolved to ultimately contribute to trimethoprim resistance, and in particular how their catalytic ability arose within the small domain encoded by their genes. Thus, this thesis aims to deepen our understanding of enzyme evolution by specifically examining the evolution of DfrB and the properties that guided this process.
Since DfrB genes have rarely been reported, I first present our efforts to genomically identify and characterize DfrB in public databases. These efforts led to the first discovery of DfrB genes outside the clinical context. We then biophysically and enzymatically characterized protein homologues of the DfrB we identified in putative protein databases. We demonstrated the ability of homologues identified in environmental contexts unrelated to human activities to catalyze dihydrofolate reduction in the same manner as DfrB. Finally, a broad search for sequence homologues, followed by experimental and computational characterization, allowed us to identify distant DfrB homologues, some capable of conferring resistance to trimethoprim and others lacking this ability. These results have allowed us to propose a model that explains the emergence of catalytic activity within the DfrB domain.
In summary, this thesis presents a multidisciplinary approach to explore and characterize the sequence space of a protein family. This approach, which includes genomic, enzymatic, biophysical and bioinformatic analyses, has enabled us to identify the structural and sequence features necessary for the formation of a functional DfrB enzyme. We have also proposed a model to explain the evolution of this primitive enzyme. Overall, our results suggest that the catalytic capacity of DfrB evolved independently of the introduction of the antibiotic trimethoprim, and thus that this resistance mechanism existed in the environment prior to its genomic recruitment in a clinical context.
This work contributes to our fundamental understanding of the mechanisms underlying the emergence of catalytic activity within a non-catalytic protein domain, and informs studies of the mechanisms developed by bacteria to proliferate in the presence of antibiotics.
Identifer | oai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/33631 |
Date | 01 1900 |
Creators | Lemay-St-Denis, Claudèle |
Contributors | Pelletier, Joelle |
Source Sets | Université de Montréal |
Language | fra |
Detected Language | French |
Type | thesis, thèse |
Format | application/pdf |
Page generated in 0.0026 seconds