L’accroissement de la population humaine, l’agriculture intensive et le développement industriel créent une pollution de l’air qui aujourd’hui devient préoccupante pour notre santé et notre environnement. Si la qualité de l’air extérieur fait l’objet depuis plusieurs décennies de règlementations qui permettent aujourd’hui de constater une diminution globale de la pollution dans les grandes agglomérations européennes, la pollution de l’air intérieur a quant à elle été longtemps sous-estimée. En effet, avec le développement de matériaux composites pour la construction et l’ameublement, la gamme de polluants de l’air intérieur s’est très largement agrandie et les concentrations ont globalement augmenté. Plusieurs études ont ainsi montré que de nombreux composés organiques volatils étaient détectés dans l’air intérieur à des concentrations bien plus élevées qu’à l’extérieur. D’autre part, la modification des modes de vie sédentaires et citadines ont pour conséquence une augmentation du temps passé dans des espaces confinés comme les logements, les lieux de travail et les transports en commun. Le simple renouvellement de l’air intérieur par de l’air extérieur devenant de moins en moins satisfaisant dans les grandes agglomérations, de nouvelles méthodes de traitement sont actuellement développées pour diminuer les concentrations de ces polluants tout en limitant la consommation d’énergie. La photocatalyse, en tant que procédé d’oxydation avancé fait partie des technologies intéressantes pour minéraliser des composés organiques volatils (COV). Après un rapide rappel du contexte sociétal de la pollution atmosphérique, les conditions de mesures et les méthodes possibles pour le traitement de cette pollution sont présentées. Le chapitre suivant regroupe les résultats sur le développement de matériaux photocatalytiques innovants et la mesure de leur efficacité. La première partie de ce chapitre fait le bilan des réacteurs photocatalytiques adaptés à l’étude de réactions à l’interface solide-gaz et résume les nombreuses difficultés liées à l’évaluation des performances de divers matériaux dans des conditions le plus souvent difficilement comparables. Dans la seconde partie, un premier matériau composite constitué de film polymère et de dioxyde de titane a été caractérisé par sa capacité à oxyder un composé volatil, le diméthyle disulfure, utilisé en agriculture pour la fumigation. Le développement d’un second matériau photocatalytique original, constitué de fibres de TiO2 pur a, quant à lui, été caractérisé par sa capacité à minéraliser des COV représentatifs de la pollution de l’air intérieur (acétone, heptane, toluène). Les deux dernières parties de ce chapitre se situent à l’interface entre la photochimie et la biologie. Dans un premier temps, la capacité d’inactivation bactérienne d’un textile « intelligent » sur lequel sont fixées des particules de dioxyde de titane couplées à un photosensibilisateur a été étudiée et l’efficacité sous rayonnement visible de ce tissu original a été analysée. L’impact de la pollution de l’air intérieur sur des cellules de la peau fait l’objet de la dernière partie de ce chapitre. Pour cela un montage permettant d’exposer des cellules de kératinocytes en culture, mais également des biopsies de peau humaine, à des concentrations contrôlées en COV a été mis au point. Nous avons ainsi pu mettre en évidence une réponse cellulaire à ce stress environnemental et préciser l’origine de ce stress. Enfin ce travail se termine par une ouverture sur des projets de recherche actuellement en cours ayant pour objet la mesure des espèces réactives de l’oxygène impliquées dans les réactions photochimiques et le développement de nouveau matériaux hybrides polymère/photosensibilisateurs. Des idées de projets à l’interface de la photochimie et de la biologie ouvrent de nouvelles perspectives à la suite de ces premiers résultats. / The increase of human population, the modern agriculture and industrial development generate air pollution, which is nowadays worrying for health and environment. Since several decades, outdoor air pollution has been regulated giving rise a global decrease of pollution in the most important European cities. However indoor air pollution was neglected for a long time. Indeed with development of composite materials for building and furnishing, the number of air pollutants strongly increased together with their concentrations. Several studies have thus demonstrated that numerous volatile organic compounds (VOC) were detected indoor at much higher concentration than outdoor. Moreover, due to the modification of sedentary and urban lifestyles, the time spent in confined spaces like housing, working places and public transportation increases. It is less and less satisfactory to simply renew indoor air with outdoor air in most of urban agglomerations. Accordingly, new processes for air treatment are developed in order to decrease indoor air pollutant concentrations while limiting energetic consumption. Photocatalysis is an advanced oxidation process potentially interesting for VOC removal. After a short reminder on the societal context of atmospheric pollution, measurement and treatment methods are presented in chapters I and II. The following chapter gathers the results obtained on the development of new photocatalytic materials and on the measure of their efficiency. The first part of this chapter is devoted to an overview of photocatalytic reactors for gas solid reactions and summarizes the numerous problems arising from the comparison of different materials under various conditions, which are not always similar. In the second part, a composite material made of titanium dioxide encapsulated in a polymer film is characterized and used for the oxidation of a volatile compound used for agricultural fumigation, dimethyl disulfide. The spectroscopic analysis led to the optimization of the material as a function of its thickness and its titanium dioxide loading. A second innovative photocatalytic material made of pure TiO2 fibers is characterized by its mineralization ability of representative indoor air VOC (acetone, heptane, and toluene). The performance of this material is compared to that of a commercial one, Quartzel ® made of TiO2 deposited on quartz fibers, under strictly identical conditions. The two last parts of this chapter are at the interface between photochemistry and biology. In a first strep, bacterial inactivation by a smart textile where titanium dioxide particles coupled with a photosensitizer is studded under visible light. In the last part, the impact of indoor air pollution on skin cells is presented. A dedicated device allowing keratinocytes culture cells and skin biopsies exposures to controlled VOC concentrations is developed. It is thus possible to evidence and to determine the origin of the cellular response to this environmental stress. At last, new research projects for a near future are then presented. They concern the determination of reactive oxygen species involved in photochemical reactions and the development of new hybrid polymers encapsulating photosensitizing molecules. Prospective ideas at the interface of photochemistry and biology conclude this memory.
Identifer | oai:union.ndltd.org:theses.fr/2016PAUU3012 |
Date | 20 October 2016 |
Creators | Le Bechec, Mickael |
Contributors | Pau, Lacombe, Sylvie |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0027 seconds