La théorie de la complexité distingue les problèmes que l'on sait résoudre en un temps polynomial en la taille des données (que l'on peut qualifier de raisonnable), des problèmes NP-complets, qui nécessitent (en l'état actuel des connaissances) un temps de résolution exponentiel en la taille des données (que l'on peut qualifier de déraisonnable). C'est pour cette raison que la communauté scientifique s'est tournée vers les algorithmes (polynomiaux) d'approximation dont la mesure de qualité se fait le plus souvent grâce au rapport d'approximation en pire cas (pour un problème de minimisation de taille, un algorithme a un rapport d'approximation de k si la taille de toute solution pouvant être retournée par l'algorithme est inférieure ou égale à k fois la taille de la solution optimale). Dans la littérature, on en vient à considérer qu'un algorithme est plus performant qu'un autre lorsqu'il possède un plus petit rapport d'approximation en pire cas. Cependant, il faut être conscient que cette mesure, désormais "classique", ne prend pas en compte la réalité de toutes les exécutions possibles d'un algorithme (elle ne considère que les exécutions menant à la plus mauvaise solution). Mes travaux de thèse ont pour objet de mieux "capturer" le comportement des algorithmes d'approximation en allant plus loin que le simple rapport d'approximation en pire cas, et ce sur deux problèmes distincts : I. Le problème du Vertex Cover En montrant que les performances moyennes d'un algorithme peuvent être décorélées des performances en pire cas. Par exemple, nous avons montré que dans la classe des graphes spécialement conçus pour le piéger en pire cas, l'algorithme glouton "Maximum Degree Greedy" retourne, en moyenne, des solutions dont la taille tend vers l'optimum lorsque n tend vers l'infini. En évaluant les performances moyennes d'un algorithme. Nous avons prouvé que l'algorithme online présenté par Demange et Paschos en 2005 (dont le rapport d'approximation en pire cas est égal au degré maximum du graphe) est au plus 2-approché en moyenne dans n'importe quel graphe. Ce résultat, combiné à d'autres, montre que cet algorithme est "en pratique" meilleur que la plupart des algorithmes 2-approchés connus, malgré un mauvais rapport d'approximation en pire cas . En comparant les performances de différents algorithmes (analytiquement et expérimentalement). Nous avons proposé un algorithme de liste et nous avons prouvé analytiquement qu'il retourne toujours une meilleure solution que celle construite par un autre algorithme de liste récent [ORL 2006] quand ils traitent la même liste de sommets (dans certains graphes particuliers, la différence de taille peut être arbitrairement grande). Nous avons également comparé analytiquement (en utilisant des outils comme les séries génératrices) les performances moyennes de six algorithmes sur les chemins. Nous les avons ensuite expérimentées sur un grand nombre de graphes de diverses familles bien choisies. On constate dans ces études que les algorithmes 2-approchés étudiés sont ceux qui obtiennent les plus mauvaises performances en moyenne et que ceux qui ont les meilleurs comportements moyens ont de mauvais rapports d'approximation (fonction du degré max. du graphe). Tous ces résultats montrent que le rapport d'approximation en pire cas n'est pas toujours suffisant pour caractériser l'intégralité de la qualité d'un algorithme et que d'autres analyses (en moyenne notamment) doivent être effectuées pour en faire le tour. II. Le problème de la connexion de groupes dynamiques dans les réseaux Nous avons analysé un processus de mise-à-jour d'un arbre connectant dans un réseau un groupe que les membres peuvent rejoindre ou quitter à tout moment. Notre processus possède de bonnes propriétés : il est simple à implémenter et il garantit, après chaque opération d'ajout ou de retrait, que le diamètre de l'arbre est au plus 2 fois l'optimal. Cependant, pour obtenir cette garantie, nous devons autoriser la reconstruction totale de l'arbre lorsque le membre identifié comme sa racine quitte le groupe. Ces étapes de reconstruction sont très coûteuses et nous cherchons donc à en évaluer le nombre. Des travaux précédents montraient que dans le pire cas, il faut reconstruire (quasiment) à chaque étape pour conserver la garantie sur le diamètre. Nous montrons dans cette thèse (en utilisant les marches aléatoires, etc.) que, en fonction de certains paramètres du problèmes (comme les probabilités associées aux opérations d'ajout et de retrait), l'espérance du nombre de reconstructions est soit logarithmique en le nombre d'évènements (ajout ou retrait), soit constant. Ce résultat montre que le comportement moyen est très bon (malgré un pire cas très défavorable) et que notre processus de mise-à-jour peut être une solution viable en pratique.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00927315 |
Date | 17 November 2009 |
Creators | Delbot, François |
Publisher | Université d'Evry-Val d'Essonne |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0029 seconds