En informatique graphique les phénomènes physiques simulés pour la création d'animations, de jeux vidéos ou la conception d'objets sont de plus en plus complexes:Tout d'abord en terme de coût de calcul, l'échelle des simulations étant de plus en plus importante;Ensuite en terme de complexité phénomènes eux-mêmes qui requièrent des modèles permettant de changer d'état et de forme.Cette complexité grandissante introduit de nouveaux défis quand il s'agit d'offrir à un utilisateur un contrôle sur ces simulations à grande échelle.Dans de nombreux cas, ce contrôle est réduit à un cycle d'essais et d'erreurs pour déterminer les paramètres de la simulation qui satisferont au mieux les objectifs de l'utilisateur.Dans cette thèse, nous proposons trois techniques pour répondre en partie à ces défis.Tout d'abord nous introduisons un nouveau modèle adaptatif permettant de réduire le temps de calcul dans des simulations Lagrangiennes de particules.À l'inverse des méthodes de ré-échantillonnage, le nombre de degrés de liberté reste constant au cours de la simulation.La méthode est ainsi plus simple à intégrer dans un simulateur existant et la charge mémoire est constante ce qui peut être un avantage dans un contexte interactif.Ensuite, nous proposons un algorithme permettant de réaliser la découpe détaillée d'objets fins et déformables.Notre méthode s'appuie sur une mise à jour dynamique des fonctions de forme associées à chaque degré de liberté, permettant ainsi de conserver un nombre de degré de liberté très faible tout en réalisant des changements topologiques détaillés.Enfin, nous nous intéressons au contrôle d'animations de fluide en s'inspirant des méthodes d'édition intéractive de formes en modélisation 3D.Dans ce système, l'utilisateur travaille directement avec le résultat d'une simulation, c'est à dire une suite de maillages représentant la surface du fluide.Des outils de sélection et d'édition spatio-temporelle inspirés des logiciels de sculpture de formes statiques lui sont proposés. / In computer graphics, the physical phenomena simulated for the creation of animations, video games or the design of objects are found to be more and more complex:First, in terms of the computational cost, the scale of the simulations is more and more important;Then, in terms of the complexity of the phenomena themselves, which require the models to be able to change their state and shape.This growing complexity introduces new challenges in order to offer control on these large scale simulations to the user.In many cases, this control is reduced to a trial-and-error process in order to determine the parameters of the simulation which best meet the objectives of the user.In this thesis, we propose three techniques to tackle these challenges.First, we introduce a new adaptive model which allows to reduce the computational cost in Lagrangian simulations of particles.In contrast with re-sampling strategies, the number of degrees of freedom remains constant throughout the simulation.Therefore, the method is simpler to integrate into an existing simulator and the memory consumption remains constant, which can be an advantage in an interactive context.Then, we propose an algorithm which allows the detailed cutting of thin deformable objects.Our method relies on a dynamic update of the shape functions associated to the degrees of freedom, which therefore allows to keep a very low number of degrees of freedom while performing detailed topological changes.Finally, we focus on the control of the fluid animations and take inspiration from interactive methods of shape editing in the field of 3D modeling.We introduce a system where the user directly edits the result of the simulation, i.e. a sequence of meshes representing the surface of the fluid.We propose selection and editing spatio-temporal tools inspired from static shapes sculpting software.
Identifer | oai:union.ndltd.org:theses.fr/2016GREAM062 |
Date | 03 October 2016 |
Creators | Manteaux, Pierre-Luc |
Contributors | Grenoble Alpes, Faure, François, Cani, Marie-Paule |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.002 seconds