Return to search

Calculs explicites en théorie d'Iwasawa / Explicit computing in Iwasawa theory

Dans le premier chapitre de cette thèse on rappelle l'énoncé ainsi que des équivalents de la conjecture de Leopoldt puis l'on donne un algorithme permettant de vérifier cette conjecture pour un corps de nombre et premier donnés. Pour la suite on suppose cette conjecture vraie pour le premier p fixé Et on étudie la torsion du groupe de Galois de l'extension abélienne maximale p-ramifiée. On présente une méthode qui détermine effectivement les facteurs invariants de ce groupe fini. Dans le troisième chapitre on donne des résultats numériques que l'on interpréte via des heuristiques à la Cohen-Lenstra. Dans le quatrième chapitre, à l'aide de l'algorithme qui permet le calcul de ce module, on donne des exemples de corps et de premiers vérifiant la conjecture de Greenberg. / In the first chapter of this thesis we explain Leopoldt's conjecture and some equivalent formulations. Then we give an algorithm that checks this conjecture for a given prime p and a number field. Next we assume that this conjecture is true, and we study the torsion part of the Galois group of the maximal abelian p-ramified p-extension of a given number field. We present a method to compute the invariant factors of this finite group. In the third chapter we give an interpretation of our numrical result by heuristics “à la” Cohen-Lenstra. In the fourth and last chapter, using our algorithm which computes this torsion submodule, we give new examples of numbers fields which satisfy Greenberg's conjecture.

Identiferoai:union.ndltd.org:theses.fr/2014BESA2019
Date11 June 2014
CreatorsVarescon, Firmin
ContributorsBesançon, Belliard, Jean Robert
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0018 seconds