Return to search

A matemática por trás do sudoku, um estudo de caso em análise combinatória /

Orientador: Luis Antonio da Silva Vasconcellos / Banca: Tatiana Miguel Rodrigues de Souza / Banca: Wladimir Seixas / Resumo: Iremos apresentar a um grupo de alunos do Ensino Médio da rede pública de Ensino do Estado de São Paulo, o mundialmente conhecido quebra cabeças Sudoku, e realizar com eles várias atividades buscando apresentá-lo como subsídio didático na aprendizagem de conceitos matemáticos importantes, além de proporcionar oportunidades de aprimorar a concentração e o raciocínio lógico. Iremos explorar conceitos matemáticos ocultos por trás de suas linhas, colunas e blocos, partindo de uma das primeiras perguntas que podem ser feitas: Qual é a quantidade total de jogos válidos existentes? Para responde-la, será proposto a realização de diversas atividades, primeiramente com um Shidoku (matriz 4 × 4), em seguida iremos calcular o total desses jogos. O tamanho reduzido dessa grade, facilita os cálculos manuais, permitindo visualizar e compreender o processo utilizado, aproveitando para introduzir o princípio fundamental da contagem. A discussão principal desse trabalho, concentra-se na exploração de um método para se determinar a quantidade de jogos válidos existentes para um Sudoku, e para isso, utilizaremos as demonstrações de Bertrand Felgenhauer e Frazer Jarvis. Também apresentaremos um método capaz de gerar uma grade completa de Sudoku, partindo de uma matriz quadrada de ordem 3, que em seguida, será utilizada para gerar uma solução de Sudoku ortogonal. Finalizando, iremos apresentar e explorar algumas formas diferenciadas para os quebra cabeças Sudoku, mostrando variações no formato... / Abstract: We will present to a group of high school students of the public Education of Sao Paulo state, the world-known puzzle Sudoku, and perform with them several activities seeking to present it as a didactic subsidy in the learning important mathematical concepts, besides opportunities to enhance concentration and logical reasoning. We will explore hidden mathematical concepts behind their lines, columns and blocks, starting from one of the rst questions that can be asked: What is the total number of valid games in existence? To answer this question, it will be proposed to perform several activities, rst with a Shidoku (4 × 4 matrix), then we will calculate the total of these games. The reduced size of this grid facilitates manual calculations, allowing to visualize and understand the process used, taking advantage to introduce the fundamental principle of counting. The main discussion of this paper focuses on the exploration of a method to determine the amount of valid games existing for a Sudoku, and for that, we will use the demonstrations of Bertrand Felgenhauer and Frazer Jarvis. We will also present a method capable of generating a complete Sudoku grid, starting from a square matrix of order 3, which will then be used to generate an orthogonal Sudoku solution. Finally, we will introduce and explore some di erent shapes for the Sudoku puzzle, showing variations in the shape of the blocks, the size of the grids and a variation that uses geometric forms in their tracks ... / Mestre

Identiferoai:union.ndltd.org:UNESP/oai:www.athena.biblioteca.unesp.br:UEP01-000895155
Date January 2017
CreatorsSantos, Ricardo Pessoa dos.
ContributorsUniversidade Estadual Paulista "Júlio de Mesquita Filho" Instituto de Biociências, Letras e Ciências Exatas.
PublisherSão José do Rio Preto,
Source SetsUniversidade Estadual Paulista
LanguagePortuguese, Portuguese, Texto em português; resumos em português e em inglês
Detected LanguagePortuguese
Typetext
Format97 f. :
RelationSistema requerido: Adobe Acrobat Reader

Page generated in 0.0023 seconds