Cette thèse est consacrée à une classe de groupes, appelés groupes de Kac-Moody, qui généralise de façon naturelle les groupes de Lie semi-simples, ou plus précisément, les groupes algébriques réductifs, dans un contexte infini-dimensionnel. On s'intéresse plus particulièrement au problème d'isomorphismes pour ces groupes, en vue d'obtenir un analogue infini-dimensionnel de la célèbre théorie des homomorphismes 'abstraits' de groupes algébriques simples, due à Armand Borel et Jacques Tits.<p><p>Le problème d'isomorphismes qu'on étudie s'avère être un cas particulier d'un problème plus général, qui consiste à caractériser les homomorphismes de groupes algébriques vers les groupes de Kac-Moody, dont l'image est bornée. Ce problème peut à son tour s'énoncer comme un problème de rigidité pour les actions de groupes algébriques sur les immeubles, via l'action naturelle d'un groupe de Kac-Moody sur une paire d'immeubles jumelés. Les résultats partiels, relatifs à ce problème de rigidité, que nous obtenons, nous permettent d'apporter une solution complète au problème d'isomorphismes pour les groupes de Kac-Moody déployés.<p>En particulier, on obtient un résultat de dévissage pour les automorphismes de ces objets. Celui-ci fournit à son tour une description complète de la structure du groupe d'automorphismes d'un groupe de Kac-Moody déployé sur un corps de caractéristique~$0$.<p><p>Nos arguments permettent également de traiter de façon analogue certaines formes anisotropes de groupes de Kac-Moody complexes, appelées formes unitaires. On montre en particulier que la topologie Hausdorff naturelle que portent ces formes est un invariant de leur structure de groupe abstrait. Ceci généralise un résultat bien connu de H. Freudenthal pour les groupes de Lie compacts.<p><p>Enfin, l'on s'intéresse aux homomorphismes de groupes de Kac-Moody à image fini-dimensionnelle, et l'on démontre la non-existence de tels homomorphismes à noyau central, lorsque le domaine est un groupe de Kac-Moody de type indéfini sur un corps infini. Ceci réduit un problème ouvert, dit problème de linéarité pour les groupes de Kac-Moody, au cas de corps de base finis. / Doctorat en sciences, Spécialisation mathématiques / info:eu-repo/semantics/nonPublished
Identifer | oai:union.ndltd.org:ulb.ac.be/oai:dipot.ulb.ac.be:2013/210962 |
Date | 20 December 2005 |
Creators | Caprace, Pierre-Emmanuel |
Contributors | Muhlherr, Bernhard, Gutt, Simone, Henneaux, Marc, Leemans, Dimitri, Rapinchuk, Andrei, Abramenko, Peter, Rémy, Bertrand, Cohen, Arjeh, Kramer, Linus, van Maldeghem, Hendrik, Tits, Jacques, Doyen, Jean |
Publisher | Universite Libre de Bruxelles, Université libre de Bruxelles, Faculté des Sciences – Mathématiques, Bruxelles |
Source Sets | Université libre de Bruxelles |
Language | French |
Detected Language | French |
Type | info:eu-repo/semantics/doctoralThesis, info:ulb-repo/semantics/doctoralThesis, info:ulb-repo/semantics/openurl/vlink-dissertation |
Format | 1 v., 2 full-text file(s): application/pdf | application/pdf |
Rights | 2 full-text file(s): info:eu-repo/semantics/restrictedAccess | info:eu-repo/semantics/openAccess |
Page generated in 0.003 seconds