Spelling suggestions: "subject:"groupes dde eie semissimples"" "subject:"groupes dde eie semisimples""
1 |
Décomposition des produits de fonctions d'orbites symétriques et antisymétriques des groupes de WeylDubois, Valérie January 2006 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
2 |
Catégorification d'algèbres amassées antisymétrisablesDemonet, Laurent 18 November 2008 (has links) (PDF)
Le but de cette thèse est de catégorifier des algèbres amassées antisymétrisables. Unegrande variété de cas antisymétriques a déjà été traitée par exemple par Keller, Caldero-Keller, Geiß-Leclerc-Schröer, Dehy-Keller, Fu-Keller, Palu. Pour ce faire, on utilise descatégories exactes stablement 2-Calabi-Yau. Pour traiter le cas antisymétrisable, nous considérons l'action d'un groupe fini sur une telle catégorie et nous introduisons unecatégorie équivariante associée qui est encore stablement 2-Calabi-Yau. Nous dévelop-pons une théorie des mutations pour ses objets rigides invariants. Une grande famille d'exemples est fournie par les catégories de représentations d'algèbres préprojectives : par exemple, si l'on prend la catégorie des représentations de l'algèbre préprojective de diagramme A(2n-1) muni de son automorphisme d'ordre 2, on obtient l'algèbre amassée des fonctions sur le groupe de Lie unipotent de type C(n). On peut de la même façon obtenir toutes les algèbres amassées de fonctions sur les sous-groupes unipotents maximaux des groupes de Lie semi-simple. Par ailleurs, on peut construire ainsi toutes les algèbres amassées de type fini. Toutes ces catégorifications nous permettent de démontrer, pour les algèbres amassées correspondantes, une conjecture de Fomin et Zelevinsky qui affirme l'indépendance linéaire des monômes d'amas.
|
3 |
"Abstract" homomorphisms of split Kac-Moody groupsCaprace, Pierre-Emmanuel 20 December 2005 (has links)
Cette thèse est consacrée à une classe de groupes, appelés groupes de Kac-Moody, qui généralise de façon naturelle les groupes de Lie semi-simples, ou plus précisément, les groupes algébriques réductifs, dans un contexte infini-dimensionnel. On s'intéresse plus particulièrement au problème d'isomorphismes pour ces groupes, en vue d'obtenir un analogue infini-dimensionnel de la célèbre théorie des homomorphismes 'abstraits' de groupes algébriques simples, due à Armand Borel et Jacques Tits.<p><p>Le problème d'isomorphismes qu'on étudie s'avère être un cas particulier d'un problème plus général, qui consiste à caractériser les homomorphismes de groupes algébriques vers les groupes de Kac-Moody, dont l'image est bornée. Ce problème peut à son tour s'énoncer comme un problème de rigidité pour les actions de groupes algébriques sur les immeubles, via l'action naturelle d'un groupe de Kac-Moody sur une paire d'immeubles jumelés. Les résultats partiels, relatifs à ce problème de rigidité, que nous obtenons, nous permettent d'apporter une solution complète au problème d'isomorphismes pour les groupes de Kac-Moody déployés.<p>En particulier, on obtient un résultat de dévissage pour les automorphismes de ces objets. Celui-ci fournit à son tour une description complète de la structure du groupe d'automorphismes d'un groupe de Kac-Moody déployé sur un corps de caractéristique~$0$.<p><p>Nos arguments permettent également de traiter de façon analogue certaines formes anisotropes de groupes de Kac-Moody complexes, appelées formes unitaires. On montre en particulier que la topologie Hausdorff naturelle que portent ces formes est un invariant de leur structure de groupe abstrait. Ceci généralise un résultat bien connu de H. Freudenthal pour les groupes de Lie compacts.<p><p>Enfin, l'on s'intéresse aux homomorphismes de groupes de Kac-Moody à image fini-dimensionnelle, et l'on démontre la non-existence de tels homomorphismes à noyau central, lorsque le domaine est un groupe de Kac-Moody de type indéfini sur un corps infini. Ceci réduit un problème ouvert, dit problème de linéarité pour les groupes de Kac-Moody, au cas de corps de base finis. / Doctorat en sciences, Spécialisation mathématiques / info:eu-repo/semantics/nonPublished
|
Page generated in 0.0692 seconds