Return to search

Switching hybrid recommender system to aid the knowledge seekers

In our daily life, time is of the essence. People do not have time to browse through hundreds of thousands of digital items every day to find the right item for them. This is where a recommendation system shines. Tigerhall is a company that distributes podcasts, ebooks and events to subscribers. They are expanding their digital content warehouse which leads to more data for the users to filter. To make it easier for users to find the right podcast or the most exciting e-book or event, a recommendation system has been implemented. A recommender system can be implemented in many different ways. There are content-based filtering methods that can be used that focus on information about the items and try to find relevant items based on that. Another alternative is to use collaboration filtering methods that use information about what the consumer has previously consumed in correlation with what other users have consumed to find relevant items. In this project, a hybrid recommender system that uses a k-nearest neighbors algorithm alongside a matrix factorization algorithm has been implemented. The k-nearest neighbors algorithm performed well despite the sparse data while the matrix factorization algorithm performs worse. The matrix factorization algorithm performed well when the user has consumed plenty of items.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-414623
Date January 2020
CreatorsBacklund, Alexander
PublisherUppsala universitet, Institutionen för informationsteknologi
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationUPTEC IT, 1401-5749 ; 20021

Page generated in 0.0016 seconds