Return to search

Automated Outlier Detection for Credit Risk KPI Time Series in E-commerce : A Case Study on the Business Value and Obstacles of Automated Outlier Detection / Automatiserad Outlier Detection för Kreditrisk KPI Tidsserier i E-handel

E-commerce has grown significantly the last decade, and made a considerable leap during Covid19. The final step in e-commerce is payments, and as a result of this, credit risk management in real-time has become increasingly important. An imperative function in credit risk management is underwriting, in which it is decided which purchases to accept and which not to. However, events can occur that cause increases or decreases in for instance acceptance rates, and these must be detected in order to for instance maintain good stakeholder relationships. Thus, KPI:s are monitored with the aim of detecting outliers as soon as possible.  The purpose of this study is to explore the business value and obstacles of automating outlier detection for credit risk KPI time series in e-commerce. In addition, aspects to think about on implementation are investigated. The research is a case study and is founded in thematic analysis of qualitative data collected at an e-commerce company.  The results of the study show that automation can contribute to significant business value due to for instance a decrease in monetary and alternative costs of manual monitoring, as well as a potential for better quality in the monitoring, and thus also enhanced stakeholder relationships. However, results also imply that there are several obstacles to actually implementing full automation such as a lack of trust in the automation, along with opinions that automation will impair knowledge and communication, and that the implementation is complex. / Under det senaste årtiondet har e-handel signifikant växt, och under Covid19 eskalerade utvecklingen ännu mer. Det sista steget i e-handel är betalningar, och till följd av detta har kreditriskhantering blivit allt viktigare. En signifikant funktion i kreditriskhantering är underwriting, där det bestäms vilka köp som skall accepteras och inte. Dock kan händelser ske som ökar eller minskar till exempel andelen köp som accepteras, och dessa händelser måste identifieras bland annat för att kunna upprätthålla goda relationer med företagets intressenter. Således monitoreras KPI:er med syftet att upptäcka anomalier så tidigt som möjligt. Syftet med denna studie är att undersöka affärsvärdet, samt barriärer, av implementation av automatiserad outlier detection för kreditrisk KPI tidsserier i e-handel. Denna forskning är en fallstudie som grundas i tematisk analys av kvalitativ data som samlas in på ett e-handelsföretag.  Vidare visar resultaten av studien att automatisering kan bidra till betydande affärsvärde bland annat till följd av minskade monetära såväl som alternativa kostnader från manuell monitorering, samt potential till bättre kvalitet i monitoreringen och således förbättrade intressentrelationer. Dock tyder resultaten även på att det finns ett flertal hinder för att faktiskt implementera full automatisering såsom brist på tillit till automatisering, tillsammans med åsikter såsom att automatisering kommer bidra till minskad kunskap och kommunikation, och att en implementation skulle vara både tekniskt och logiskt utmanande.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-318319
Date January 2022
CreatorsLindberg, Jennifer
PublisherKTH, Skolan för industriell teknik och management (ITM)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-ITM-EX ; 2022:315

Page generated in 0.0025 seconds