Return to search

TECHNO-ECONOMIC ANALYSIS OF THE HYDROGEN SUPPLY CHAIN : A CASE STUDY OF THE SWEDISH INDUSTRY / TEKNISK-EKONOMISK ANALYS AV VÄTGASFÖRSÖRJNINGSKEDJAN: : EN FALLSTUDIE AV DEN SVENSKA INDUSTRIN

The European Energy system is currently transitioning towards a reduced use of fossil fuels and increasing use of renewable energy. Hydrogen as energy carrier for renewable electricity has a potential to play a significant role in this transition. It can be stored and transported in its gaseous or liquid state, and utilized in industries that require highprocess heat, which makes them difficult to decarbonize. Further, hydrogen storage canbe employed to store over‐produced renewable electricity in large scale and for long periods of time. This research aims to develop a methodology to conduct a layout and dispatch optimization for utilizing locally produced hydrogen. The objective is to find the least cost supply pathway for a defined demand. In this case study, hydrogen is produced by water electrolysis supplied by the local electricity grid and renewable electricity, such as solar PV, onshore and offshore wind turbines. The scope is limited to gaseous hydrogen thereby the distribution is also limited to pipelines or road trucks. The optimized supplychain comprises four main stages: I) electricity generation and storage; II) hydrogen production; III) hydrogen compression and storage; IV) hydrogen transportation to the end consumer. It results in the system's optimum hourly dispatch schedule and a proposed least‐cost layout. The developed methodology is finally applied to an industrial case study in Sweden, for which scenarios with varying boundary conditions are tested. The least cost supply chain for the case study resulted in a system solely supplied with electricity purchased from the grid, a PEM electrolyzer, a hydrogen storage in a Lined Rock Cavern, and hydrogen transport via pipeline. The lowest Levelized Cost of Hydrogen from electricity purchase until delivery is 5.17 EUR/kgH2. The study concludes that there is no one optimum solution for all and the constraints of the optimization problem need to be evaluated case by case.The study further highlights that intermittency and peaks of both electricity availability and hydrogen demand can lead to an increase in system cost owing to the oversizing and storage needs. / Det europeiska energisystemet är för närvarande i en övergångsprocess mot en minskande användning av fossila bränslen och en ökande användning av förnybar energi. Vätgas som energibärare för förnybar el har potential att spela en viktig roll i denna övergång. Vätgas kan lagras och transporteras i gasform eller flytande form, och användas i industrier som kräver hög processvärme vars koldioxidutsläpp därför är svåra att minska. Vidare kan vätgaslagring användas för att lagra överproducerad förnybar el istor skala och under långa perioder. Denna forskning syftar till att utveckla en metod för layout och distributions optimering för utnyttjandet av lokalt producerad vätgas. Målet är att hitta den minst kostsamma försörjningsvägen för en definierad efterfrågan. I den här fallstudien produceras vätgas genom vattenelektrolys som försörjs av det lokala elnätet och förnybar el, t.ex. solceller, vindkraftverk på land och till havs. Omfattningen är begränsad till gasformig vätgas och därmed är distributionen också begränsad till rörledningar eller lastbilar. Den optimerade försörjningskedjan består av fyra huvudsteg: I) elproduktion och lagring, II) vätgasproduktion, III) komprimering och lagring av vätgas, IV) transport av vätgas till slutkonsumenten. Metodens output är systemets optimala timplan och ett förslag till layout med den lägsta kostnaden.  Den utvecklade metoden tillämpas slutligen i en industriell fallstudie i Sverige, för vilken scenarier med varierande randvillkor testas. Den minst kostsamma försörjningskedjan för fallstudien resulterade i ett system som enbart försörjs med el som köps från nätet, en PEM‐elektrolyser, ett magasin för vätgaslagring i ett fodrat bergrum och vätgastransport via en rörledning. Den lägsta Levelized Cost för vätgas från el inköp till leverans är 5,17EUR/ kgH2. I studien dras slutsatsen att det inte finns någon optimal lösning i allmänhet och att begränsningarna i optimeringsproblemet måste utvärderas från fall till fall. Studien belyser vidare att ostadighet och toppar i både eltillgången och efterfrågan på vätgas kan leda till en ökning av systemkostnaderna på grund av överdimensionering och lagringsbehov.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-328765
Date January 2023
CreatorsDautel, Jan Lukas
PublisherKTH, Skolan för industriell teknik och management (ITM)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-ITM-EX ; 2023:54

Page generated in 0.0135 seconds